【題目】已知二次函數(shù)(是常數(shù))
(1)求證:不論為何值,該函數(shù)圖象與軸一定有兩個(gè)公共點(diǎn)。
(2)若該函數(shù)圖象經(jīng)過點(diǎn)(0,-2),則該函數(shù)圖象怎樣平移經(jīng)過原點(diǎn)?
【答案】(1)詳見解析;(2)向右平移2個(gè)單位或向左平移1個(gè)單位.
【解析】
(1)框?qū)⒑瘮?shù)問題轉(zhuǎn)化為方程問題,然后證明△>0即可;
(2)將點(diǎn)(0,-2)代入可求得n的值,從而得到拋物線的接下來,然后再求得拋物線與x軸的交點(diǎn)坐標(biāo),然后可確定出平移的方向和距離.
(1)△
∵不論為何值
∴>0
即△>0
∴方程有兩個(gè)不相等實(shí)數(shù)根,該函數(shù)圖象與軸一定有兩個(gè)公共點(diǎn).
(2)∵圖象過(0,-2)
∴當(dāng)=0 =-2代入得,
-3=-2,
=1,
∴令=0得,
∴交點(diǎn)為(-2,0)、(1,0)
向右平移2個(gè)單位或向左平移1個(gè)單位.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,AB=5cm,如果AD平分∠BAC,且ADCD,那么點(diǎn)D到AB的距離為 ______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,中學(xué)生完成數(shù)學(xué)家庭作業(yè)時(shí),注意力指數(shù)隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;
(2)若學(xué)生的注意力指數(shù)不低于40為高效時(shí)間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學(xué)家庭作業(yè)的高效時(shí)間是多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,CD是AB上的中線,且DA=DB=DC.
(1)已知∠A=30°,求∠ACB的度數(shù);
(2)已知∠A=40°,求∠ACB的度數(shù);
(3)已知∠A=x°,求∠ACB的度數(shù);
(4)請你根據(jù)解題結(jié)果歸納出一個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)是邊上的點(diǎn),平分,平分,有下列結(jié)論:①,②為的中點(diǎn),③,④,其中正確的有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)是直線上一點(diǎn)(不與、重合),以為一邊在的右側(cè)作,使,,連接.
(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),如果,則______度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)在直線上時(shí),則,之間有怎樣的數(shù)量關(guān)系?
寫出所有可能的結(jié)論并說明條件.
答:(2)①數(shù)量關(guān)系____________.
理由:
②數(shù)量關(guān)系____________.
備用圖:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)為的中點(diǎn),若直角繞點(diǎn)旋轉(zhuǎn),分別交于點(diǎn),交于點(diǎn),則下列說法正確的個(gè)數(shù)有( )
①;②;③;④若的面積為一個(gè)定值,則的長也是一個(gè)定值.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們環(huán)保意識的不斷增強(qiáng),我市家庭電動自行車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2014年底擁有家庭電動自行車125輛,2016年底家庭電動自行車的擁有量達(dá)到180輛.
(1)若該小區(qū)2014年底到2017年底家庭電動自行車擁有量的年平均增長率相同,則該小區(qū)到2017年底電動自行車將達(dá)到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資3萬元再建若干個(gè)停車位,據(jù)測算,建造費(fèi)用分別為室內(nèi)車位1000元/個(gè),露天車位200元/個(gè).考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個(gè)?試寫出所有可能的方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com