(2002•哈爾濱)已知|x|=3,|y|=2,且x•y<0,則x+y的值等于( )
A.5或-5
B.1或-1
C.5或1
D.-5或-1
【答案】分析:先根據(jù)絕對值的性質,求出x、y的值,然后根據(jù)x•y<0,進一步確定x、y的值,再代值求解即可.
解答:解:∵|x|=3,|y|=2,x•y<0,
∴x=3時,y=-2,則x+y=3-2=1;
x=-3時,y=2,則x+y=-3+2=-1.
故選B.
點評:此題主要考查了絕對值的性質,能夠根據(jù)已知條件正確的判斷出x、y的值是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬卷(1)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

同步練習冊答案