【題目】為做好全國(guó)文明城市的創(chuàng)建工作,我市交警連續(xù)天對(duì)某路口個(gè)“歲以下行人”和個(gè)“歲及以上行人”中出現(xiàn)交通違章的情況進(jìn)行了調(diào)查統(tǒng)計(jì),將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖.請(qǐng)根據(jù)所給信息,解答下列問題.
(1)求這天“歲及以上行人”中每天違章人數(shù)的眾數(shù).
(2)某天中午下班時(shí)段經(jīng)過這一路口的“歲以下行人”為人,請(qǐng)估計(jì)大約有多少人會(huì)出現(xiàn)交通違章行為.
(3)請(qǐng)根據(jù)以上交通違章行為的調(diào)查統(tǒng)計(jì),就文明城市創(chuàng)建減少交通違章提出合理建議.
【答案】(1);(2)人;(3)應(yīng)加大對(duì)老年人的交通安全教育(答案不唯一)
【解析】
(1)根據(jù)眾數(shù)的概念求解可得;
(2)利用樣本估計(jì)總體思想求解可得;
(3)根據(jù)折線圖中的數(shù)據(jù)提出合理的建議均可,答案不唯一.
(1)這天“歲及歲以上行人”中每天違章人數(shù)有三天是8人,出現(xiàn)次數(shù)最多,
∴這天“歲及歲以上行人”中每天違章人數(shù)的眾數(shù)為:;
(2 )估計(jì)出現(xiàn)交通違章行為的人數(shù)大約為:
;
(3)由折線統(tǒng)計(jì)圖知,“歲及歲以上行人”違章次數(shù)明顯多于“歲以下行人”,所以應(yīng)加大對(duì)老年人的交通安全教育.(答案不唯一)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1cm,弦AB、CD的長(zhǎng)度分別為cm,1cm.
(1)求圓心O到弦AB的距離;
(2)弦AC、BD所夾的銳角α的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的頂點(diǎn)分別在軸和軸上,與雙曲線恰好交于的中點(diǎn). 若,則的值為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(是常數(shù))經(jīng)過點(diǎn).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo).
(2)若點(diǎn)在拋物線上,且點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.
①當(dāng)點(diǎn)落在該拋物線上時(shí),求的值;
②當(dāng)點(diǎn)落在第二象限內(nèi),取得最小值時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,并與軸交于點(diǎn),點(diǎn)是對(duì)稱軸與軸的交點(diǎn).
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第一象限,連結(jié)BP、AP,求的面積的最大值;
(3)如圖②所示,在對(duì)稱軸的右側(cè)作交拋物線于點(diǎn),求出點(diǎn)的坐標(biāo);并探究:在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞頂點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=4,AD∶DC=1∶3時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)E為AB上的一點(diǎn),EF⊥AB,交BD于點(diǎn)F.
(1)如圖1,直按寫出的值 ;
(2)將△EBF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,連接AE、DF,猜想DF與AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)BE=BA時(shí),其他條件不變,△EBF繞點(diǎn)B順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<360°),當(dāng)α為何值時(shí),EA=ED?在圖3或備用圖中畫出圖形,并直接寫出此時(shí)α= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com