【題目】如圖,在直角坐標系中,線段AB的兩個端點的坐標分別為A(﹣3,0),B(0,4).
(1)畫出線段AB先向右平移3個單位,再向下平移4個單位后得到的線段CD,并寫出A的對應點D的坐標,B的對應點C的坐標;
(2)連接AD、BC,判斷所得圖形的形狀.(直接回答,不必證明)

【答案】
(1)解:如圖所示,CD即為所求作的線段,

D(0,﹣4),C(3,0);


(2)解:∵AC、BD互相垂直平分,

∴四邊形ABCD是菱形


【解析】(1)根據(jù)網(wǎng)格結構找出點C、D的位置,然后連接即可,再根據(jù)平面直角坐標系寫出點C、D的坐標;(2)根據(jù)對角線互相垂直平分的四邊形是菱形判定.
【考點精析】利用菱形的判定方法對題目進行判斷即可得到答案,需要熟知任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF.
②當AB=2,AD=3 時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設動點M、N運動的時間為t秒(t>0).

(1)當t=3秒時.直接寫出點N的坐標,并求出經(jīng)過O、A、N三點的拋物線的解析式;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“節(jié)能環(huán)保,低碳生活”是我們倡導的一種生活方式,某家電商場計劃用11.8萬元購進節(jié)能型電視機、洗衣機和空調共40臺,三種家電的進價和售價如表所示:

價格
種類

進價
(元/臺)

售價
(元/臺)

電視機

5000

5500

洗衣機

2000

2160

調

2400

2700


(1)在不超出現(xiàn)有資金的前提下,若購進電視機的數(shù)量和洗衣機的數(shù)量相同,空調的數(shù)量不超過電視機的數(shù)量的3倍.請問商場有哪幾種進貨方案?
(2)在“2012年消費促進月”促銷活動期間,商家針對這三種節(jié)能型產品推出“現(xiàn)金每購1000元送50元家電消費券一張、多買多送”的活動.在(1)的條件下,若三種電器在活動期間全部售出,商家預估最多送出多少張?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,然后解答問題:
在平面直角坐標系中,以任意兩點P(x1 , y1),Q(x2 , y2)為端點的線段的中點坐標為( , ).如圖,在平面直角坐標系xOy中,雙曲線y= (x<0)和y= (x>0)的圖象關于y軸對稱,直線y= + 與兩個圖象分別交于A(a,1),B(1,b)兩點,點C為線段AB的中點,連接OC、OB.

(1)求a、b、k的值及點C的坐標;
(2)若在坐標平面上有一點D,使得以O、C、B、D為頂點的四邊形是平行四邊形,請求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝中國共產黨建黨90周年,6月中旬我市某展覽館進行黨史展覽,把免費參觀票分到學校.展覽館有2個驗票口A、B(可進出),另外還有2個出口C、D(不許進).小張同學憑票進入展覽大廳,參觀結束后離開.
(1)小張從進入到離開共有多少種可能的進出方式?(要求用列表或樹狀圖)
(2)小張不從同一個驗票口進出的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小
明用這張紙帶將底面周長為10cm直三棱柱紙盒的側面進行包貼(要求包
貼時沒有重疊部分). 小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的
側面展開進行分析.


(1)若紙帶在側面纏繞三圈,正好將這個直三棱柱紙盒的側面全部包貼滿.則紙帶AD的長度為 cm;
(2)若AD=100cm,紙帶在側面纏繞多圈,正好將這個直三棱柱紙盒的側面全部包貼滿.則這個直三棱柱紙盒的高度是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA為⊙O的切線,A為切點,過A作OP的垂線AB,垂足為點C,交⊙O于點B,延長BO與⊙O交于點D,與PA的延長線交于點E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE= ,求sin∠E.

查看答案和解析>>

同步練習冊答案