【題目】二次函數(shù)的圖象如圖,點位于坐標原點,點,,…,軸的正半軸上,點,,…,在二次函數(shù)位于第一象限的圖象上,,,,…,都是直角頂點在拋物線上的等腰直角三角形,則的斜邊長為________

【答案】4040

【解析】

如圖所示,過點B1,B2,B3分別作y軸的垂線,垂足分別為C,D,E,分別寫出直線A0B1、直線A1B2、直線A2B3的解析式,將它們分別與y=x2聯(lián)立,求得點B1,B2,B3的坐標,從而可得A0A1=2A1A2=4,A2A3=6,發(fā)現(xiàn)規(guī)律后,按照規(guī)律即可求得的斜邊長.

解:如圖所示,過點B1B2,B3分別作y軸的垂線,垂足分別為C,DE

∵△A0B1A1,△A1B2A2,△A2B3A3A9B10A10都是直角頂點在拋物線上的等腰直角三角形

∴∠B1A0A1=B2A1A2=B3A2A3=45°

A0B1所在直線的解析式為:y=x

,得B11,1

A0A1=2B1C=2

A10,2

∴直線A1B2為:y=x+2

,得B224

A1A2=2B2D=4

A20,6

∴直線A2B3為:y=x+6

,得B33,9

A2A3=2B3E=6

由上面A0A1=2,A1A2=4,A2A3=6,可以看出這些直角頂點在拋物線上的等腰直角三角形的斜邊長依次加2

的斜邊長為2+2019×2=4040

故答案為:4040

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉,進市場調(diào)查,甲種花卉的種植費用y()與種植面積xm2之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為100/m2

(1)請直接寫出當0≤x≤300x300時,yx的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共1200m2,如果甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費用最少?最少總費用為多少元?

(3)(2)的條件下,若種植總費用不小于123000元,求出甲種花卉種植面積的范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】內(nèi)接于,的中點,連接,交邊于點,且.

1)如圖1,求的度數(shù);

2)如圖2,作于點于點,交于點,求證:

3)如圖3,在(2)的條件下,連接,若,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在同一直角坐標系xOy中,有雙曲線,直線y2k2x+b1,y3k3x+b2,且點A(2,5),點B(6,n)在雙曲線的圖象上

1)求y1y2的解析式;

2)若y3與直線x4交于雙曲線,且y3y2,求y3的解析式;

3)直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店代理某品牌商品的銷售.已知該品牌商品進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關(guān)系如圖所示(實線),付員工的工資每人每天100元,每天還應(yīng)支付其它費用150元.

1)求日銷售y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當天的銷售價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過兩點,點為拋物線的頂點,拋物線的對稱軸與軸交于點

1)求拋物線的解析式;

2)動點從點出發(fā),沿線段向終點作勻速運動,速度為每秒1個單位長度,運動時間為,過點,交于點,以為正方形的一邊,向上作正方形,邊于點,延長于點

①當為何值時,點落在拋物線上;

②在點運動過程中,是否存在某一時刻,使得四邊形為平行四邊形?若存在,求出此時刻的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于兩點,與軸相交于點,且點與點的坐標分別為,,點是拋物線的頂點.

1)求二次函數(shù)的關(guān)系式.

2)點為線段上一個動點,過點軸于點.若,的面積為

①求的函數(shù)關(guān)系式,寫出自變量的取值范圍.

②當取得最值時,求點的坐標.

3)在上是否存在點,使為直角三角形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃組織學(xué)生參加“書法”、“攝影”、“航!薄ⅰ皣濉彼膫課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學(xué)生對四個課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機抽取部分學(xué)生進行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據(jù)給出的信息解答下列問題:

1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖(畫圖后請標注相應(yīng)的數(shù)據(jù));

2m_______,n_______;

3)若該校共有1200名學(xué)生,試估計該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?

4)分別用A、B、C、D表示“書法”、“攝影”、“航!、“圍棋”,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過B30),C0-3)兩點,點D為頂點.

1)求拋物線的解析式及頂點D的坐標;

2)點E在拋物線的對稱軸上,FBD上,求BE+EF的最小值;

3)點P是拋物線第四象限的點(不與B、C重合),連接PB,以PB為邊作正方形BPMN,當點MN恰好落在對稱軸上時,求出對應(yīng)的P點的坐標(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案