精英家教網 > 初中數學 > 題目詳情
(1)如圖,要在一塊形狀為直角三角形(∠C為直角)的鐵皮上裁出一個半圓形的鐵皮,需先在這塊鐵皮上畫出一個半圓,使它的圓心O在線段AC上,且與AB、BC都相切.請你用直尺和圓規(guī)畫出來(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(2)若AC=3,BC=4,求上述半圓的直徑.

【答案】分析:(1)由于⊙O與BC、AB都相切,即O到AB、BC的距離相等,因此點O必為∠ABC的角平分線與線段AC的交點,可據此進行作圖.
(2)設⊙O與AB的切點為D,由勾股定理易求得AB的值,根據切線長定理知:BC=BD,即可求得AD的長,設出⊙O的半徑,并表示出OA、OD的長,在Rt△OAD中,根據勾股定理即可求得⊙O的半徑,進而可得⊙O的直徑.(此題解法較多,只要能求出結果即可)
解答:解:(1)作出角平分線得(1分),作出半圓再得(1分),小結(1分),共(3分).

(2)方法一:
解:設半⊙O切BA于點D;
∵AC=3,BC=4,
;(4分)
∵半⊙O切BA、BC于點D、C,
∴BD=BC=4,
∴AD=AB-BD=1;(5分)
又∵AB與⊙O相切于點D,
∴OD⊥AB,∴∠ADO=90°;
設半⊙O的半徑為r,在Rt△ADO中,由勾股定理得AD2+OD2=OA2
即12+r2=(3-r)2(7分)
解得,,
∴半⊙O的直徑等于.(8分)
方法二:同一,證得∠ADO=90°,∵∠ACB=90°,
∴∠ADO=∠ACB,
∵∠A=∠A,
∴△ADO∽△ACB,
,
,解得,
∴半⊙O的直徑等于
方法三:同一,證得∠ADO=90°,
,
∴AB•OD=AO•BC,
即5r=4(3-r),
解得,
∴半⊙O的直徑等于
點評:此題考查了角平行的性質、切線的性質、切線長定理、勾股定理等知識的綜合應用,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、如圖,要在一塊形狀為直角三角形(∠C為直角)的鐵皮上裁出一個半圓形的鐵皮,需先在這塊鐵皮上畫出一個半圓,使它的圓心在線段AC上,且與AB、BC都相切.請你用直尺和圓規(guī)畫出來(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法).

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網(1)如圖,要在一塊形狀為直角三角形(∠C為直角)的鐵皮上裁出一個半圓形的鐵皮,需先在這塊鐵皮上畫出一個半圓,使它的圓心O在線段AC上,且與AB、BC都相切.請你用直尺和圓規(guī)畫出來(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(2)若AC=3,BC=4,求上述半圓的直徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,要在一塊△ABC的紙片上截取正方形DEFG模型.其中,G、F在BC邊上,D、E分別在AB、AC邊上,AH⊥BC交DE于M,若BC=12cm,AH=8cm,則正方形DEFG的邊長是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,要在一塊長方形空地上設計一個花園,長方形空地長40米,寬30米,正中央的花園也是一個與整個場地長寬比例相同的長方形,花園四周是觀光大道,如果要使四周觀光大道的面積是花園面積的
916
,東西兩側觀光大道寬度相等,南北兩側觀光大道寬度相等.應如何設計四周觀光大道的寬度?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,要在一塊邊長為a的正方形草地上修建兩個半徑為r的圓形噴水池,則剩下的草地面積為
a2-2πr2
a2-2πr2

查看答案和解析>>

同步練習冊答案