已知直線(xiàn)y=kx+b與直線(xiàn)y=2x平行,且它與直線(xiàn)y=5x+4的交點(diǎn)在y軸上則其函數(shù)表達(dá)式是


  1. A.
    y=4x+2
  2. B.
    y=2x+5
  3. C.
    y=2x+4
  4. D.
    y=5x+2
C
分析:直線(xiàn)y=kx+b與直線(xiàn)y=2x平行,先確定k的值,再將其與直線(xiàn)y=5x+4的交點(diǎn)(0,4)代入求得b的值,從而確定這條直線(xiàn)的函數(shù)關(guān)系式.
解答:∵直線(xiàn)y=kx+b與直線(xiàn)y=2x平行,
∴k=2,
又∵y軸的交點(diǎn)為(0,4),即b=4,
∴這條直線(xiàn)的函數(shù)關(guān)系式為y=2x+4.
故選C.
點(diǎn)評(píng):此題根據(jù)兩直線(xiàn)平行時(shí)函數(shù)解析式的系數(shù)相等的特點(diǎn)解答,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知直線(xiàn)y=kx+b經(jīng)過(guò)第一、二、四象限,則直線(xiàn)y=bx+k經(jīng)過(guò)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•義烏市)如圖1,已知直線(xiàn)y=kx與拋物線(xiàn)y=-
4
27
x2
+
22
3
交于點(diǎn)A(3,6).
(1)求直線(xiàn)y=kx的解析式和線(xiàn)段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線(xiàn)第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線(xiàn)OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線(xiàn)PM的垂線(xiàn),交y軸于點(diǎn)N.試探究:線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線(xiàn)上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線(xiàn)段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿(mǎn)足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=kx+1經(jīng)過(guò)點(diǎn)A(2,5),求不等式kx+1>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=kx+b(k≠0)與直線(xiàn)y=-2x平行,且經(jīng)過(guò)點(diǎn)(1,1),則直線(xiàn)y=kx+b(k≠0)可以看作由直線(xiàn)y=-2x向
平移
3
3
個(gè)單位長(zhǎng)度而得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=kx+2-4k(k為實(shí)數(shù)),不論k為何值,直線(xiàn)都經(jīng)過(guò)定點(diǎn)
(4,2)
(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案