如圖,邊長(zhǎng)為的正三角形ABC內(nèi)接于⊙O,則AB所對(duì)弧ACB的長(zhǎng)為         
.

試題分析:連結(jié)OA、OB,作OH⊥AB于H,根據(jù)等邊三角形得到∠AOB=120°,由OH⊥AB,根據(jù)等腰三角形的性質(zhì)得∠AOH=60°,AH=AB=,然后根據(jù)含30度的直角三角形三邊的關(guān)系得到OH=AH=1,OA=2,再根據(jù)弧長(zhǎng)公式求解.
試題解析:連結(jié)OA、OB,作OH⊥AB于H,如圖,

∵△ABC為等邊三角形,
∴∠AOB=120°,
∵OH⊥AB,
∴∠AOH=60°,AH=BH=AB=×2=,
∴OH=AH=1,
∴OA=2,
∴AB所對(duì)弧ACB的長(zhǎng)度=
考點(diǎn): 1.弧長(zhǎng)的計(jì)算;2.等邊三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙O中,C﹑D為⊙O上兩點(diǎn),AB是⊙O的直徑,已知∠AOC=130º,AB=2.

求(1)的長(zhǎng);    (2)∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在11×11的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)在圖中作出△ABC關(guān)于直線l對(duì)稱(chēng)的△A1B1C1;(要求A與A1,B與B1,C與C1相對(duì)應(yīng))
(2)作出△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A2B2C;
(3)在(2)的條件下求出線段CB旋轉(zhuǎn)到CB2所掃過(guò)的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線軸交于點(diǎn)A,直線交于點(diǎn)B,點(diǎn)C在線段AB上,⊙C與軸相切于點(diǎn)P,與OB切于點(diǎn)Q.

求:(1)A點(diǎn)的坐標(biāo);
(2)OB的長(zhǎng);
(3)C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦.

(1)請(qǐng)你按下面步驟畫(huà)圖(畫(huà)圖或作輔助線時(shí)先使用鉛筆畫(huà)出,確定后必須使用黑色字跡的簽字筆描黑);
第一步,過(guò)點(diǎn)A作∠BAC的角平分線,交⊙O于點(diǎn)D;
第二步,過(guò)點(diǎn)D作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E.
第三步,連接BD.
(2)求證:DE是⊙O的切線;
(3)如圖AD=5,AE=4,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長(zhǎng)為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩圓的半徑分別為3和7,且這兩圓有公共點(diǎn),則這兩圓的圓心距d為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,ABCD為⊙O內(nèi)接四邊形,若∠D=85°,則∠B=(   )
A.85°B.95°C.105°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知⊙O的半徑為4,OC垂直弦AB于點(diǎn)C,∠AOB=120°,則弦AB長(zhǎng)為     .
 

查看答案和解析>>

同步練習(xí)冊(cè)答案