(2010•撫順)如圖所示,
(1)正方形ABCD及等腰Rt△AEF有公共頂點A,∠EAF=90°,連接BE、DF.將Rt△AEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;
(2)將(1)中的正方形ABCD變?yōu)榫匦蜛BCD,等腰Rt△AEF變?yōu)镽t△AEF,且AD=kAB,AF=kAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;
(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅蜛BCD,將Rt△AEF變?yōu)椤鰽EF,且∠BAD=∠EAF=a,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用a表示出直線BE、DF形成的銳角β.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的過程中線段的長度不變,得到AF=AE,又∠BAE與∠DAF都與∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE與DF相等,延長DF交BE于G,根據(jù)全等三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因為矩形的鄰邊不相等,但根據(jù)題意,可以得到對應(yīng)邊成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根據(jù)相似三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EHF=90°,所以DF⊥BE;
(3)與(2)的證明方法相同,但根據(jù)相似三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EAF+∠EHF=180°,所以DF與BE的夾角β=180°-α.
解答:解:(1)DF與BE互相垂直且相等.
證明:延長DF分別交AB、BE于點P、G(1分)
在正方形ABCD和等腰直角△AEF中
AD=AB,AF=AE,
∠BAD=∠EAF=90°
∴∠FAD=∠EAB
∴△FAD≌△EAB(2分)
∴∠AFD=∠AEB,DF=BE(3分)
∵∠AFD+∠AFG=180°,
∴∠AEG+∠AFG=180°,
∵∠EAF=90°,
∴∠EGF=180°-90°=90°,
∴DF⊥BE(5分)

(2)數(shù)量關(guān)系改變,位置關(guān)系不變.DF=kBE,DF⊥BE.(7分)
延長DF交EB于點H,
∵AD=kAB,AF=kAE
=k,=k
=
∵∠BAD=∠EAF=a
∴∠FAD=∠EAB
∴△FAD∽△EAB(9分)
=k
∴DF=kBE(10分)
∵△FAD∽△EAB,
∴∠AFD=∠AEB,
∵∠AFD+∠AFH=180°,
∴∠AEH+∠AFH=180°,
∵∠EAF=90°,
∴∠EHF=180°-90°=90°,
∴DF⊥BE(5分)

(3)不改變.DF=kBE,β=180°-a.(7分)
證法(一):延長DF交EB的延長線于點H,
∵AD=kAB,AF=kAE
=k,=k
=
∵∠BAD=∠EAF=a
∴∠FAD=∠EAB
∴△FAD∽△EAB(9分)
=k
∴DF=kBE(10分)
由△FAD∽△EAB得∠AFD=∠AEB
∵∠AFD+∠AFH=180°
∴∠AEB+∠AFH=180°
∵四邊形AEHF的內(nèi)角和為360°,
∴∠EAF+∠EHF=180°
∵∠EAF=α,∠EHF=β
∴a+β=180°∴β=180°-a(12分)

證法(二):DF=kBE的證法與證法(一)相同
延長DF分別交EB、AB的延長線于點H、G.由△FAD∽△EAB得∠ADF=∠ABE
∵∠ABE=∠GBH,∴∠ADF=∠GBH,
∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G.
在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a
∴a+β=180°∴β=180°-a(12分)

證法(三):在平行四邊形ABCD中AB∥CD可得到∠ABC+∠C=180°
∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH
在△BHP、△CDP中,由三角形內(nèi)角和等于180°可得∠C+∠CDP=∠CBH+∠BHP
∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP
∴∠EBA+∠CDP=∠BHP
由△FAD∽△EAB得∠ADP=∠EBA
∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP
∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β
∴a+β=180°∴β=180°-a(12分)
(有不同解法,參照以上給分點,只要正確均得分.)
點評:本題(1)中主要利用三角形全等的判定和性質(zhì)以及正方形的性質(zhì)進(jìn)行證明;(2)(3)利用相似三角形的判定和性質(zhì)證明,要解決本題,證明三角形全等和三角相似是解題的關(guān)鍵,也是難點所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點A作AD∥x軸交拋物線于點D,過點D作DE⊥x軸,垂足為點E.點M是四邊形OADE的對角線的交點,點F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點P、Q從C、F兩點同時出發(fā),均以每秒1個長度單位的速度沿CB、FA方向運動,點P運動到O時P、Q兩點同時停止運動.設(shè)運動的時間為t秒,在運動過程中,以P、Q、O、M四點為頂點的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點N,使以B、C、F、N為頂點的四邊形是梯形?若存在,直接寫出點N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點A作AD∥x軸交拋物線于點D,過點D作DE⊥x軸,垂足為點E.點M是四邊形OADE的對角線的交點,點F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點P、Q從C、F兩點同時出發(fā),均以每秒1個長度單位的速度沿CB、FA方向運動,點P運動到O時P、Q兩點同時停止運動.設(shè)運動的時間為t秒,在運動過程中,以P、Q、O、M四點為頂點的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點N,使以B、C、F、N為頂點的四邊形是梯形?若存在,直接寫出點N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省撫順市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•撫順)如圖所示,平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(0,4)、B(-2,0)、C(6,0).過點A作AD∥x軸交拋物線于點D,過點D作DE⊥x軸,垂足為點E.點M是四邊形OADE的對角線的交點,點F在y軸負(fù)半軸上,且F(0,-2).
(1)求拋物線的解析式,并直接寫出四邊形OADE的形狀;
(2)當(dāng)點P、Q從C、F兩點同時出發(fā),均以每秒1個長度單位的速度沿CB、FA方向運動,點P運動到O時P、Q兩點同時停止運動.設(shè)運動的時間為t秒,在運動過程中,以P、Q、O、M四點為頂點的四邊形的面積為S,求出S與t之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在拋物線上是否存在點N,使以B、C、F、N為頂點的四邊形是梯形?若存在,直接寫出點N的坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2010•撫順)如圖所示,已知a∥b,∠1=28°,∠2=25°,則∠3=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省撫順市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•撫順)如圖所示,在完全重合放置的兩張矩形紙片ABCD中,AB=4,BC=8,將上面的矩形紙片折疊,使點C與點A重合,折痕為EF,點D的對應(yīng)點為G,連接DG,則圖中陰影部分的面積為( )

A.
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊答案