【題目】在平面直角坐標(biāo)系中,直線l1yx+5與反比例函數(shù)yk0x0)圖象交于點(diǎn)A1,n);另一條直線l2y=﹣2x+bx軸交于點(diǎn)E,與y軸交于點(diǎn)B,與反比例函數(shù)yk0,x0)圖象交于點(diǎn)C和點(diǎn)D,m),連接OC、OD

1)求反比例函數(shù)解析式和點(diǎn)C的坐標(biāo);

2)求△OCD的面積.

【答案】1y,點(diǎn)C6,1);(2

【解析】

1)點(diǎn)A1,n)在直線l1yx+5的圖象上,可求點(diǎn)A的坐標(biāo),進(jìn)而求出反比例函數(shù)關(guān)系式,點(diǎn)D在反比例函數(shù)的圖象上,求出點(diǎn)D的坐標(biāo),從而確定直線l2y=﹣2x+b的關(guān)系式,聯(lián)立求出直線l2與反比例函數(shù)的圖象的交點(diǎn)坐標(biāo),確定點(diǎn)C的坐標(biāo),

2)求出直線l2x軸、y軸的交點(diǎn)B、E的坐標(biāo),利用面積差可求出△OCD的面積.

解:(1)∵點(diǎn)A1,n)在直線l1yx+5的圖象上,

n6,

∴點(diǎn)A16)代入y得,

k6,

∴反比例函數(shù)y

當(dāng)x時,y12

∴點(diǎn)D,12)代入直線l2y=﹣2x+b得,

b13,

∴直線l2y=﹣2x+13,

由題意得:解得:,

∴點(diǎn)C6,1

答:反比例函數(shù)解析式y,點(diǎn)C的坐標(biāo)為(61).

2)直線l2y=﹣2x+13,與x軸的交點(diǎn)E,0)與y軸的交點(diǎn)B0,13

SOCDSBOESBODSOCE

答:△OCD的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(x>0)(x>0)的圖象分別是.設(shè)點(diǎn)P上,PAy軸交于點(diǎn)A,PBx軸,交于點(diǎn)B,PAB的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn),經(jīng)過A、B的直線以每秒1個單位的

速度向下作勻速平移運(yùn)動,與此同時,點(diǎn)P從點(diǎn)B出發(fā),在直線上以每秒1個單位的速度沿直線向右下方向作勻速運(yùn)動.設(shè)它們運(yùn)動的時間為秒.

1)用含的代數(shù)式表示點(diǎn)P的坐標(biāo);

2)過OOCABC,CCD軸于D,問: 為何值時,P為圓心、1為半徑的圓與直線OC相切?并說明此時與直線CD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,任意一個實(shí)數(shù)在數(shù)軸上都能找到與之對應(yīng)的點(diǎn),比如我們可以在數(shù)軸上找到與數(shù)字2對應(yīng)的點(diǎn).

1)在如圖所示的數(shù)軸上,畫出一個你喜歡的無理數(shù),并用點(diǎn)表示;

2)(1)中所取點(diǎn)表示的數(shù)字是______,相反數(shù)是_____,絕對值是______,倒數(shù)是_____,其到點(diǎn)5的距離是______

3)取原點(diǎn)為,表示數(shù)字1的點(diǎn)為,將(1)中點(diǎn)向左平移2個單位長度,再取其關(guān)于點(diǎn)的對稱點(diǎn),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古語說:“春眠不覺曉”,每到初春時分,想必有不少人變得嗜睡,而且睡醒后精神不佳.我們可以在飲食方面進(jìn)行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山藥、麥片.春天即將來臨時,某商人抓住商機(jī),購進(jìn)甲、乙、丙三種麥片,已知銷售每袋甲種麥片的利潤率為10%,每袋乙種麥片的利潤率為20%,每袋丙種麥片的利潤率為30%,當(dāng)售出的甲、乙、丙三種麥片的袋數(shù)之比為131時,商人得到的總利潤率為22%;當(dāng)售出的甲、乙、丙三種變片的袋數(shù)之比為321時,商人得到的總利潤率為20%:那么當(dāng)售出的甲、乙、丙三種麥片的袋數(shù)之比為23;4時,這個商人得到的總利潤率為_____(用百分號表最終結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓中AB為直徑,弦AC=CD=6,DE=EB=2,弧CDE的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC方向平移2cm得到DEF,若ABC的周長為16cm,則四辺形ABFD的周長為( )

A. 16cmB. 18cmC. 20cmD. 22cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏的爸爸買了某項體育比賽的一張門票,她和哥哥兩人都很想去觀看.可門票只有一張,讀九年級的哥哥想了一個辦法,拿了8張撲克牌,將數(shù)字為23,5,9的四張牌給小敏,將數(shù)字為4,67,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小敏和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將兩人抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小敏去;如果和為奇數(shù),則哥哥去.

1】請用畫樹形圖或列表的方法求小敏去看比賽的概率;

2】哥哥設(shè)計的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設(shè)計一種公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H.

(1)如圖1,求證:PQ=PE;

(2)如圖2,G是圓上一點(diǎn),∠GAB=30,連接AG交PD于F,連接BF,tan∠BFE=,求∠C的度數(shù);

(3)如圖3,在(2)的條件下,PD=6,連接QG交BC于點(diǎn)M,求QM的長.

查看答案和解析>>

同步練習(xí)冊答案