如圖,已知⊙O的半徑為1,DE是⊙O的直徑,過(guò)點(diǎn)D作⊙O的切線(xiàn)AD,C是AD的中點(diǎn),AE交⊙O于B點(diǎn),四邊形BCOE是平行四邊形.
(1)求AD的長(zhǎng);
(2)BC是⊙O的切線(xiàn)嗎?若是,給出證明;若不是,說(shuō)明理由.

【答案】分析:(1)連接BD,由ED為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到∠DBE為直角,由BCOE為平行四邊形,得到BC與OE平行,且BC=OE=1,在直角三角形ABD中,C為AD的中點(diǎn),利用斜邊上的中線(xiàn)等于斜邊的一半求出AD的長(zhǎng)即可;
(2)連接OB,由BC與OD平行,BC=OD,得到四邊形BCDO為平行四邊形,由AD為圓的切線(xiàn),利用切線(xiàn)的性質(zhì)得到OD垂直于AD,可得出四邊形BCDO為矩形,利用矩形的性質(zhì)得到OB垂直于BC,即可得出BC為圓O的切線(xiàn).
解答:解:(1)連接BD,∵DE是直徑∴∠DBE=90°,
∵四邊形BCOE為平行四邊形,
∴BC∥OE,BC=OE=1,
在Rt△ABD中,C為AD的中點(diǎn),
∴BC=AD=1,
則AD=2;

(2)是,理由如下:
如圖,連接OB.∵BC∥OD,BC=OD,
∴四邊形BCDO為平行四邊形,
∵AD為圓O的切線(xiàn),
∴OD⊥AD,
∴四邊形BCDO為矩形,
∴OB⊥BC,
則BC為圓O的切線(xiàn).
點(diǎn)評(píng):此題考查了切線(xiàn)的判定與性質(zhì),直角三角形斜邊上的中線(xiàn)性質(zhì),以及平行四邊形的判定與性質(zhì),熟練掌握切線(xiàn)的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O的半徑為6cm,射線(xiàn)PM經(jīng)過(guò)點(diǎn)O,OP=10cm,射線(xiàn)PN與⊙O相切于點(diǎn)Q.A,B兩點(diǎn)同時(shí)從點(diǎn)精英家教網(wǎng)P出發(fā),點(diǎn)A以5cm/s的速度沿射線(xiàn)PM方向運(yùn)動(dòng),點(diǎn)B以4cm/s的速度沿射線(xiàn)PN方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)求PQ的長(zhǎng);
(2)當(dāng)t為何值時(shí),直線(xiàn)AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長(zhǎng)線(xiàn)上的一點(diǎn),∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線(xiàn);
(2)求弦AC的長(zhǎng);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點(diǎn)E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊(cè)答案