【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:
①abc>0;②b<a+c;③4ac﹣b2>0;④2a+b=0
其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個

【答案】A
【解析】解:①觀察函數(shù)圖象可知:a<0,c>0,﹣ >0,

∴b>0,

∴abc<0,①錯誤;②∵當(dāng)x=﹣1時,y<0,

∴a﹣b+c<0,

∴b>a+c,②錯誤;③∵拋物線與x軸有兩個交點(diǎn),

∴△=b2﹣4ac>0,

∴4ac﹣b2<0,③錯誤;④∵拋物線的對稱軸為直線x=﹣ =1,

∴b=﹣2a,

∴2a+b=0,④正確.

所以答案是:A.

【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,分別是邊中點(diǎn),則面積等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 AB x 軸,y 軸分別交于點(diǎn) A和點(diǎn) B,點(diǎn) A的坐標(biāo)為(1,0),且 2OAOB

1)求直線 AB 解析式;

2)如圖,將A O B 向右平移 3 個單位長度,得到A1O1B1,求線段 O B1的長;

3)在(2)中AOB 掃過的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過點(diǎn)DDFBE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=ACDBC邊上的中點(diǎn),連接AD,BE平分∠ABCAC于點(diǎn)E,過EEFBCAB于點(diǎn)F

1)若∠C=36°,求∠BAD的度數(shù);

2)求證:FB=FE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.

(1)求證:∠ABE=∠ACD;

(2)求證:過點(diǎn)A、F的直線垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

1)畫出△ABC先向右平移5個單位長度,再向上平移2個單位長度所得的△A1B1C1;

2)畫出△ABC的中線AD;

3)畫出△ABC的高CE所在直線,標(biāo)出垂足E

4)在(1)的條件下,線段AA1CC1的關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場同時出售同樣的水瓶和水杯,且定價相同,請根據(jù)圖中提供的信息,回答下列問題:

(1)一個水瓶與一個水杯分別是多少元?(請列方程解應(yīng)用題)

(2)為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和12個水杯,請問選擇哪家商場購買更合算,并說明理由(水瓶和水杯必須在同一家購買).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中,AB為⊙O的直徑,AB=4,P為AB上一點(diǎn),過點(diǎn)P作⊙O的弦CD,設(shè)∠BCD=m∠ACD.

(1)已知 ,求m的值,及∠BCD、∠ACD的度數(shù)各是多少?
(2)在(1)的條件下,且 ,求弦CD的長;
(3)當(dāng) 時,是否存在正實(shí)數(shù)m,使弦CD最短?如果存在,求出m的值,如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案