【題目】如圖所示,AB=AC,AB為⊙O的直徑,AC、BC分別交⊙O于E、D,連結ED、BE.
(1)試判斷DE與BD是否相等,并說明理由;
(2)如果BC=6,AB=5,求BE的長.
【答案】(1)見解析;(2)
【解析】試題分析:(1)可通過連接AD,AD就是等腰三角形ABC底邊上的高,根據(jù)等腰三角形三線合一的特點,可得出∠CAD=∠BAD,根據(jù)圓周角定理即可得出∠DEB=∠DBE,便可證得DE=DB.
(2)本題中由于BE⊥AC,那么BE就是三角形ABC中AC邊上的高,可用面積的不同表示方法得出ACBE=CBAD.進而求出BE的長.
試題解析:(1)DE=BD;連接AD,則AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三線合一),∴,∴DE=BD;
(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴ACBE=CBAD,∴BE=4.8.
科目:初中數(shù)學 來源: 題型:
【題目】某商店經銷一批襯衣,每件進價為a元,零售價比進價高m%,后因市場變化,該商把零售價調整為原來零售價的n%出售.那么調整后每件襯衣的零售價是( )
A.a(1+m%)(1﹣n%)元
B.am%(1﹣n%)元
C.a(1+m%)n%元
D.a(1+m%n%)元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內,將正方形ABCD沿圓的內壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線經過點B,且頂點在直線上.
(1)求拋物線對應的函數(shù)關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉,到與BC重合時停止,設直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)和一次函數(shù),把 稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A(2,0)和拋物線L上的點B(﹣1,n),請完成下列任務:
【嘗試】(1)當t=2時,拋物線 的頂點坐標為 ;
(2)判斷點A (填是或否)在拋物線L上;
(3)n的值是 ;
【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標為 .
【應用】二次函數(shù)是二次函數(shù)和一次函數(shù)的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com