【題目】下列圖形中,既是中心對稱圖又是軸對稱圖形的是( )
A.
B.
C.
D.
【答案】C
【解析】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)錯誤;
B、是中心對稱圖,不是軸對稱圖形,故本選項(xiàng)錯誤;
C、既是中心對稱圖又是軸對稱圖形,故本選項(xiàng)正確;
D、是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)錯誤.
故選C.
【考點(diǎn)精析】掌握軸對稱圖形和中心對稱及中心對稱圖形是解答本題的根本,需要知道兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動點(diǎn)P , Q分別從點(diǎn)B , D同時出發(fā),運(yùn)動速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動,到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動,到點(diǎn)O停止1s后繼續(xù)運(yùn)動,到點(diǎn)B停止,連接AP , AQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動時間為x(s).
(1)填空:AB=cm,AB與CD之間的距離為cm;
(2)當(dāng)4≤x≤10時,求y與x之間的函數(shù)解析式;
(3)直接寫出在整個運(yùn)動過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x﹣ 與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2﹣ x+c(a≠0)經(jīng)過A,B,C三點(diǎn).
(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過點(diǎn)A(﹣2,0)的直線交y軸正半軸于點(diǎn)B,將直線AB繞著點(diǎn)順時針旋轉(zhuǎn)90°后,分別與x軸、y軸交于點(diǎn)D、C.
(1)若OB=4,求直線AB的函數(shù)關(guān)系式;
(2)連接BD,若△ABD的面積是5,求點(diǎn)B的運(yùn)動路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個不完整的統(tǒng)計(jì)圖,請結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為度.
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,求證:AE=BD;
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y= x+1與拋物線y= x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為4.
(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點(diǎn)C,橫坐標(biāo)為t的點(diǎn)P在第四象限的拋物線上,過點(diǎn)P作AB的垂線交x軸于點(diǎn)E,點(diǎn)Q為垂足,設(shè)CE的長為d,求d與t之間的函數(shù)關(guān)系式,直接寫出自變量t的取值范圍:
(3)在(2)的條件下,過點(diǎn)B作y軸的平行線交x軸于點(diǎn)D,連接DQ.當(dāng)∠AQD=3∠PQD時,求點(diǎn)P坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com