【題目】如圖拋物線與x軸分別交于A、B兩點(diǎn),頂點(diǎn)C在y軸負(fù)半軸上,也在正方形ADEB的邊上,已知正方形ADEB的邊長(zhǎng)為2,若正方形FGMN的頂點(diǎn)F、G落在x軸上,頂點(diǎn)M、N落在圖中的拋物線上,則正方形FGMN的邊長(zhǎng)為.
【答案】
【解析】依題可得A(-1,0),B(1,0),C(0,-2),
∴設(shè)拋物線解析式為:y=a(x-1)(x+1),
∵C(0,-2)在拋物線上,
∴a×(-1)×1=-2,
∴a=2,
∴拋物線解析式為:y=2x2-2,
設(shè)F(m,0),G(-m,0),
∴N(m,2m2-2),M(-m,2m2-2),
又四邊形FGMN為正方形,
∴FG=GM,
∴=,
∴m=,
∴正方形FGMN的邊長(zhǎng)為:2m=1.
所以答案是:1.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD(紙片)折疊,使點(diǎn)B與AD邊上的點(diǎn)K重合,EG為折痕;點(diǎn)C與AD邊上的點(diǎn)K重合,FH為折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AD∥BC,AC,BD相交于O,則圖中能夠全等的三角形共有( )對(duì).
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件中,是隨機(jī)事件的是( )
A.任意選擇某一電視頻道,它正在播放新聞聯(lián)播
B.三角形任意兩邊之和大于第三邊
C. 是實(shí)數(shù),
D.在一個(gè)裝著白球和黑球的袋中摸球,摸出紅球
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α角到△A1B1C的位置,A1B1恰好經(jīng)過點(diǎn)B,則旋轉(zhuǎn)角α的度數(shù)等( )
A.35°
B.55°
C.65°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,當(dāng)x取1時(shí),函數(shù)有最大值為3,且函數(shù)的圖象經(jīng)過點(diǎn)(-2,0)。
(1)求這個(gè)二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出函數(shù)值y大于零時(shí)x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】株洲五橋主橋主孔為拱梁鋼構(gòu)組合體系(如圖1),小明暑假旅游時(shí),來(lái)到五橋觀光,發(fā)現(xiàn)拱梁的路面部分有均勻排列著9根支柱,他回家上網(wǎng)查到了拱梁是拋物線,其跨度為20米,拱高(中柱)10米,于是他建立如圖2的坐標(biāo)系,發(fā)現(xiàn)可以將余下的8根支柱的高度都算出來(lái)了,請(qǐng)你求出中柱左邊第二根支柱CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 是等腰直角三角形,分別以直角邊 AC,BC 為直徑畫弧,若 AB=2 ,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. +
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀以下內(nèi)容:
已知實(shí)數(shù)x,y滿足x+y=2,且求k的值.
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.
乙同學(xué):先將方程組中的兩個(gè)方程相加,再求k的值.
丙同學(xué):先解方程組,再求k的值.
(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對(duì)你選擇的思路進(jìn)行簡(jiǎn)要評(píng)價(jià).
(評(píng)價(jià)參考建議:基于觀察到題目的什么特征設(shè)計(jì)的相應(yīng)思路,如何操作才能實(shí)現(xiàn)這些思路、運(yùn)算的簡(jiǎn)潔性,以及你依此可以總結(jié)什么解題策略等等)
請(qǐng)先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com