【題目】如圖①,A,B,C,D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.

(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求 的值.

【答案】
(1)證明:連結OC,如圖①,

∵CE為切線,

∴OC⊥CE,

∵CE∥BD,

∴OC⊥BD,

,

∴∠BAC=∠CAD;


(2)解:如圖②,連結OC交BD于E,

由(1)得OC⊥BD,則BE=DE,

∵AB為直徑,

∴∠D=90°,

∴BD= =8,

∴BE= BD=4,

在Rt△OBE中,OE= =3,

∵BE∥CE,

∴△OBE∽△OCE,

,即

∴CE= ;


(3)解:∵OE=3,OC=5,

∴CE=5﹣3=2,

∴∠CDB=∠CAB,

∵tan∠CBE= =

∴tan∠CAB=tan∠CBE= ,

∵tan∠CAB=

=


【解析】(1)根據(jù)切線的性質和已知條件,得到OC⊥BD,根據(jù)垂徑定理得到兩弧相等,根據(jù)在同圓中相等的弧所對的圓周角相等,得到∠BAC=∠CAD;(2)由(1)知OC⊥BD,BE=DE;AB為直徑,得到∠D=90°,根據(jù)勾股定理求出BD、BE、OE的長,由BE∥CE,得到△OBE∽△OCE,得到比例,求出CE的值;(3)根據(jù)在同圓中相等的弧所對的圓周角相等,得到∠CDB=∠CAB,由三角函數(shù)tan∠CBE的值,求出tan∠CAB=tan∠CBE的值,求出的值.
【考點精析】認真審題,首先需要了解切線的性質定理(切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑),還要掌握相似三角形的判定與性質(相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)

(1)[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經(jīng)過A, B,C三點的圓上嗎?

(2)我們知道,如果點D不在經(jīng)過A,B,C三點的圓上,那么點D要么在圓O外,要么在圓O內,以下該同學的想法說明了點D不在圓O外。
請結合圖④證明點D也不在⊙O外.


[結論]綜上可得結論:如圖②,如果∠ACB=∠ADB=a(點C,D在AB的同側),那么點D在經(jīng)過A,B,C三點的圓上,即:點A、B、C、D四點共圓。
[應用]利用上述結論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點A順時針旋轉一個角度得△ADE,連接BE CD,延長CD交BE于點F,

圖⑤
①求證:點B、C、A、F四點共圓;②求證:BF=EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線MNx軸、y軸分別相交于B、A兩點,OA,OB的長滿足式子

(1)A,B兩點的坐標;

(2)若點OAB的距離為,求線段AB的長;

3)在(2)的條件下,x軸上是否存在點P,使ΔABP使以AB為腰的等腰三角形,若存在請直接寫出滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°DEAC的垂直平分線.

1)求證:△BCD是等腰三角形;

2△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線C1:y=a(x+1)2﹣4的頂點為C,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.

(1)求點C的坐標及a 的值;
(2)如圖②,拋物線C2與C1關于x軸對稱,將拋物線C2向右平移4個單位,得到拋物線C3 . C3與x軸交于點B、E,點P是直線CE上方拋物線C3上的一個動點,過點P作y軸的平行線,交CE于點F.
①求線段PF長的最大值;
②若PE=EF,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某籃球興趣小組有15名同學,在一次投籃比賽中,他們的成績如右面的條形圖所示.這15名同學進球數(shù)的眾數(shù)和中位數(shù)分別是( 。

A. 10,7 B. 7,7 C. 9,9 D. 9,7

【答案】D

【解析】試題根據(jù)眾數(shù)與中位數(shù)的定義分別進行解答即可.

解:由條形統(tǒng)計圖給出的數(shù)據(jù)可得:9出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是9

把這組數(shù)據(jù)從小到達排列,最中間的數(shù)是7,則中位數(shù)是7

故選D

考點:眾數(shù);條形統(tǒng)計圖;中位數(shù).

型】單選題
束】
4

【題目】都在直線上,且,則的關系是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與直線交于點,則______

【答案】-1

【解析】

將點A的坐標代入兩直線解析式得出關于mb的方程組,解之可得.

解:由題意知,

解得,

故答案為:

【點睛】

本題主要考查兩直線相交或平行問題,解題的關鍵是掌握兩直線的交點坐標必定同時滿足兩個直線解析式.

型】填空
束】
11

【題目】如圖,長方形紙片ABCD中,AB=4BC=6,將△ABC沿AC折疊,使點B落在點E處,CEAD于點F,則△AFC的面積等于___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩地相距4千米.上午800,甲從A地出發(fā)步行到B地,820乙從B地出發(fā)騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時間(分)之間的關系如圖所示.由圖中的信息可知,乙到達A地的時間為____

查看答案和解析>>

同步練習冊答案