【題目】已知拋物線y=x2+bx+3經(jīng)過點A(﹣1,8),頂點為M;

(1)求拋物線的表達式;

(2)設(shè)拋物線對稱軸與x軸交于點B,連接AB、AM,求△ABM的面積.

【答案】(1)y=x2﹣4x+3;(2).

【解析】

(1)把點A的坐標代入函數(shù)解析式,列出關(guān)于系數(shù)b的方程,通過解方程求得b的值即可;

(2)(1)中函數(shù)解析式得到對稱軸為x=2,然后結(jié)合三角形的面積公式進行解答即可.

解:(1)∵拋物線y=x2+bx+3經(jīng)過點A(﹣1,8),

8=(-1)2﹣b+3,

解得b=﹣4,

∴所求拋物線的表達式為y=x2﹣4x+3;

(2)AH⊥BM于點H,

∵由拋物線y=x2﹣4x+3解析式可得,

M的坐標為(2,﹣1),點B的坐標為(2,0),

BM=1,

∵對稱軸為直線x=2,

AH=3,

∴△ABM的面積.

故答案為(1)y=x2﹣4x+3;(2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一類隨機事件概率的計算方法:設(shè)試驗結(jié)果落在某個區(qū)域S中的每一點的機會均等,用A表示事件試驗結(jié)果落在S中的一個小區(qū)域M,那么事件A發(fā)生的概率P(A)=有一塊邊長為30cm的正方形ABCD飛鏢游戲板,假設(shè)飛鏢投在游戲板上的每一點的機會均等.求下列事件發(fā)生的概率:

(1)在飛鏢游戲板上畫有半徑為5cm的一個圓(如圖1),求飛鏢落在圓內(nèi)的概率;

(2)飛鏢在游戲板上的落點記為點O,求△OAB為鈍角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.

(1)求拋物線的解析式;

(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當點P運動到點E時,求△PCD的面積;

(3)N在拋物線對稱軸上,點Mx軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為2的等邊的邊上一點,作于點,點延長線上一點,當時,連接邊于點,則的長為(

A.1B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm

查看答案和解析>>

同步練習(xí)冊答案