精英家教網 > 初中數學 > 題目詳情

計算:

(1)等于多少分?等于多少秒?

(2)等于多少分?等于多少度?

答案:略
解析:

(1)×60′=7.5′,7.5×60″=450

(2)6000×′=100′,100×°=°.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”.
(1)角的“接近度”定義:設正n邊形的每個內角的度數為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于
 

②若n=20,則該正n邊形的“接近度”等于
 

③當“接近度”等于
 
.  時,正n邊形就成了圓.
(2)邊的“接近度”定義:設一個正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為|
dR
-1|
.分別計算n=3,n=6時邊的“接近度”,并猜測當邊的“接近度”等于多少時,正n邊形就成了圓?
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

我市中考體育測試中,1分鐘跳繩為自選項目.某中學九年級共有若干名女同學選考1分鐘跳繩,根據測試評分標準,將她們的成績進行統計后分為A、B、C、D四等,并繪制成下面的頻數分布表(注:5~10的意義為大于等于5分且小于10分,其余類似)和扇形統計圖(如圖).
等級 分值 跳繩(次/1分鐘) 頻數
A 12.5~15 135~160 m
B 10~12.5 110~135 30
C 5~10 60~110 n
D 0~5 0~60 1
(1)m的值是
14
14
,n的值是
30
30
;
(2)C等級人數的百分比是
10%
10%

(3)在抽取的這個樣本中,請說明哪個分數段的學生最多?
(4)請你幫助老師計算這次1分鐘跳繩測試的及格率(10分以上含10分為及格).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”.
(1)角的“接近度”定義:設正n邊形的每個內角的度數為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于________.
②若n=20,則該正n邊形的“接近度”等于________.
③當“接近度”等于________. 時,正n邊形就成了圓.
(2)邊的“接近度”定義:設一個正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為數學公式.分別計算n=3,n=6時邊的“接近度”,并猜測當邊的“接近度”等于多少時,正n邊形就成了圓?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”。
(1)角的“接近度”定義:設正n邊形的每個內角的度數為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于         。
②若n=20,則該正n邊形的“接近度”等于         。

③當“接近度”等于         。  時,正n邊形就成了圓.
(2)邊的“接近度”定義:設一個正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為.分別計算n=3,n=6時邊的“接近度”,并猜測當邊的“接近度”等于多少時,正n邊形就成了圓?

查看答案和解析>>

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(17)(解析版) 題型:解答題

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”.
(1)角的“接近度”定義:設正n邊形的每個內角的度數為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于______.
②若n=20,則該正n邊形的“接近度”等于______.
③當“接近度”等于______.  時,正n邊形就成了圓.
(2)邊的“接近度”定義:設一個正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為.分別計算n=3,n=6時邊的“接近度”,并猜測當邊的“接近度”等于多少時,正n邊形就成了圓?

查看答案和解析>>

同步練習冊答案