如圖,點(diǎn)O是△ABC的內(nèi)切圓的圓心.若∠BAC=75°,則∠BOC的度數(shù)為( 。
分析:由點(diǎn)O是△ABC的內(nèi)切圓的圓心,可得∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,又由∠BAC=75°,可求得∠ABC+∠ACB的度數(shù),繼而求得答案.
解答:解:∵點(diǎn)O是△ABC的內(nèi)切圓的圓心,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠BAC=75°,
∴∠ABC+∠ACB=180°-∠BAC=105°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-
1
2
(∠ABC+∠ACB)=180°-
1
2
×105°=127.5°.
故選C.
點(diǎn)評:此題考查了三角形的內(nèi)切圓的性質(zhì)與三角形內(nèi)角和定理.此題難度不大,注意掌握數(shù)形結(jié)合思想與整體思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是△ABC外接圓
BC
的中點(diǎn),點(diǎn)D、E在邊AC上,使得AD=AB,BE=EC.證明:B、E、D、F四點(diǎn)共圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,點(diǎn)P是△ABC內(nèi)的一點(diǎn),有下列結(jié)論:①∠BPC>∠A;②∠BPC一定是鈍角;③∠BPC=∠A+∠ABP+∠ACP.其中正確的結(jié)論共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O是△ABC內(nèi)任意一點(diǎn),G、D、E分別為AC、OA、OB的中點(diǎn),F(xiàn)為BC上一動點(diǎn),問四邊形GDEF能否為平行四邊形?若可以,指出F點(diǎn)位置,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花模擬)如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,則△EBC的面積=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•天津)如圖,點(diǎn)I是△ABC的內(nèi)心,AI交BC邊于D,交△ABC的外接圓于點(diǎn)E.
求證:(1)IE=BE;
      (2)IE是AE和DE的比例中項.

查看答案和解析>>

同步練習(xí)冊答案