【題目】一個(gè)角的補(bǔ)角加上14°,等于這個(gè)角的余角的5倍,這個(gè)角的度數(shù)是°.

【答案】64°
【解析】解:設(shè)這個(gè)角為x,則補(bǔ)角為180°﹣x,余角為90°﹣x,
由題意得:180°﹣x+14°=5(90°﹣x),
解得:x=64°.
故填:64°angc
根據(jù)余角和補(bǔ)角的意義可表示出這個(gè)角的余角和補(bǔ)角,根據(jù)題意可列出方程求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

1)求二次函數(shù)解析式;

2)連接POPC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明“直角三角形中的兩個(gè)銳角不能都大于45°”,第一步應(yīng)假設(shè)這個(gè)三角形中( )

A. 每一個(gè)銳角都小于45° B. 有一個(gè)銳角大于45°

C. 有一個(gè)銳角小于45° D. 每一個(gè)銳角都大于45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2-(m+5)x+5.

(1)求證:它的圖象與x軸必有交點(diǎn),且過x軸上一定點(diǎn);

(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),0<x1<x2,(1) 中定點(diǎn)的直線L;y=x+ky軸于點(diǎn)D,AB=4,圓心在直線L上的⊙MA、B兩點(diǎn),求拋物線和直線的關(guān)系式,AB與弧圍成的弓形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決群眾看病難的問題,一種藥品連續(xù)兩次降價(jià),每盒的價(jià)格由原來的60元降至48.6元,則平均每次降價(jià)的百分率為 %.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(-3,4)所在的象限為( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年我國(guó)大學(xué)生畢業(yè)人數(shù)將達(dá)到7 490 000人,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.7.49×107
B.7.49×106
C.74.9×105
D.0.749×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥MN∥BC.MN分別交邊AB、DC于點(diǎn)M、N.如果AM:MB=2:3,AD=2,BC=7.求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鮮花銷售部在春節(jié)前20天內(nèi)銷售一批鮮花.其中,該銷售部公司的鮮花批發(fā)部日銷售量y1(萬朵)與時(shí)間xx為整數(shù),單位:天)關(guān)系為二次函數(shù),部分對(duì)應(yīng)值如表所示.與此同時(shí),該銷售部還通過某網(wǎng)絡(luò)電子商務(wù)平臺(tái)銷售鮮花,網(wǎng)上銷售日銷售量y2(萬朵)與時(shí)間xx為整數(shù),單位:天) 的函數(shù)關(guān)系如圖所示.

1)求y1x的二次函數(shù)關(guān)系式及自變量x的取值范圍;

2)求y2x的函數(shù)關(guān)系式及自變量x的取值范圍;

3)當(dāng)8≤x≤20時(shí),設(shè)該花木公司鮮花日銷售總量為y萬朵,寫出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案