【題目】如圖,在平面直角坐標系中,點 A(0,4)在 y 軸上,點 B(b,0)是 x 軸上一動點,且 4< b <4,△ABC 是以 AB 為直角邊,B 為直角頂點的等腰直角三角形.
(1)求點 C 的坐標(用含 b 的式子表示);
(2)以 x 軸為對稱軸,作點 C 的對稱點 C 連接 BC、AC,請把圖形補充完整,并求出△ABC的面積(用含 b 的式子表示);
(3)點 B 在運動過程中, OAC 的度數(shù)是否發(fā)生變化,若變化請說明理由;若不變化,請直接 寫出 OAC 的度數(shù).
【答案】(1)點;(2);(3)不變化,.
【解析】
(1)過點C作CE⊥x軸,垂足為E,由題意可證△ABO≌△BCE,可得BE=OA=4,BO=EC=-b,則OE=4+b,即求點C的坐標;
(2)根據(jù)題意補全圖形,根據(jù)S△ABC'=S△ABO+S梯形AOEC'-S△BEC'=×(-b)×4+×(4-b)(4+b)-×4×(-b),可求△ABC′的面積;
(3)過點A作AF⊥EC',垂足為F,可證四邊形AOEF是矩形,可得AO=EF=4,OE=AF=4+b,可證AF=C'F=4+b,可得∠FAC'=45°,且∠OAF=90°,可求∠OAC'=45°.
(1)如圖,過點C作CE⊥x軸,垂足為E,
∵△ABC是等腰直角三角形,
∴AB=BC,∠ABC=90°,
∵∠ABE+∠CBE=90°,∠CBE+∠BCE=90°,
∴∠ABE=∠BCE,且AB=BC,∠AOB=∠BEC=90°,
∴△ABO≌△BCE(AAS)
∴BO=CE,AO=BE,
∵點A(0,4),點B(b,0),且-4<b<0,
∴BE=OA=4,BO=EC=-b,
∴OE=4+b
∴點C坐標(4+b,b)
(2)根據(jù)題意畫出圖形,如下圖,
∵點C與點C'關于x軸對稱,
∴點C'(4+b,-b),C'C⊥x軸,
∵S△ABC'=S△ABO+S梯形AOEC'-S△BEC'=×(-b)×4+×(4-b)(4+b)-×4×(-b),
∴S△ABC'=8-b2,
(3)點B在運動過程中,∠OAC′的度數(shù)不發(fā)生變化,
理由如下:如圖,過點A作AF⊥EC',垂足為F,
∵AF⊥EC',EC'⊥BE,AO⊥OE,
∴四邊形AOEF是矩形,
∴AO=EF=4,OE=AF=4+b,
∵C'F=EF-EC'=4-(-b)=4+b,
∴AF=C'F,且∠AFE=90°,
∴∠FAC'=45°,且∠OAF=90°,
∴∠OAC'=45°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-∠2的度數(shù)是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線BC//ED.
(1)如圖1,若點A在直線DE上,且∠B=44°,∠EAC=57°,求∠BAC的度數(shù);
(2)如圖2,若點A是直線DE的上方一點,點G在BC的延長線上求證:∠ACG=∠BAC+∠ABC;
(3)如圖3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接寫出∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于點D,BE平分∠ABC交AC于點E,AD、BE相交于點F,過點D作DG∥AB,過點B作BG⊥DG交DG于點G.下列結論:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,∠ABC=3∠C,∠BAC的平分線AD交BC于D,BE⊥AD于E.
(1)如圖l,求證:AC﹣AB=2BE.
(2)如圖2,將∠DCA沿直線AC翻折,交BA的延長線于點M,連接MD交AC于點N;MA=BA,BE=1,AB=,求AN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數(shù)的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數(shù)為m.當m=3時,點B的橫坐標的所有可能值是 ▲ ;當點B的橫坐標為4n(n為正整數(shù))時,m= (用含n的代數(shù)式表示.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖:在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形.按要求畫出下列圖形:
(1)將△ABC向右平移5個單位得到△A′B′C′;
(2)將△A′B′C′繞點A′順時針旋轉90°得到△A′DE;
(3)連結EC′,則△A′EC′是 三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:△ABC繞點A逆時針方向旋轉得到△ADE,其中∠B=50°,∠C=60°.
(1)若AD平分∠BAC時,求∠BAD的度數(shù).
(2)若AC⊥DE時,AC與DE交于點F,求旋轉角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸的交點坐標為(2,0),則下列說法:
①y隨x的增大而減;②b>0;③關于x的方程kx+b=0的解為x=2;④不等式kx+b>0的解集是x>2.
其中說法正確的有_________(把你認為說法正確的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com