【題目】等邊△ABC中,點H在邊BC上,點K在邊AC上,且滿足AK=HC,連接AH、BK交于點F,
(1)如圖1,求∠AFB的度數(shù);
(2)如圖2,連接FC,若∠BFC=90°,點G為邊 AC上一點,且滿足∠GFC=30°,求證:AG⊥BG;
【答案】(1) ;(2)證明見解析
【解析】
(1)易得:≌ 即可求出的度數(shù).
(2))在BF上取M使AF=FM,連MC延長FG交MC于N,可得△AFM是等邊三角形,可證△AFB≌△AMC,再證△AGF≌△CGN,可得是的中點,可以根據(jù)等腰三角形三線合一的性質(zhì)解答即可.
解:(1)在等邊△ABC中:AB=AC,∠BAK=∠C=60°
在△ABK和△CAH中,
∴≌
(2)在BF上取M使AF=FM,連MC延長FG交MC于N,
∵
∴
∴△AFM是等邊三角形
∴AF=AM, ∠FAM=60°
又∵∠BAC=60°
∴∠BAF=∠CAM
又∵AB=AC
∴△AFB≌△AMC,
∴∠AMC=∠AFC= 120°,
又△AFM為等邊三角形,
∴∠AMB=∠BMC=60°,
∵∠BFC=90°,
∴∠MFC=90°,∠NFC=30°,
∴△FMN為等邊三角形,且FN=NC,
∴NC=FN=FM=AF,
∴△AGF≌△CGN,
∴AG=GC,
又∵AB=BC
∴BG⊥AC,
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當△AEF周長最小時,∠CFE的大小是( 。
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市從 2018 年 1 月 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多.某商店計劃最多投入 8 萬元購進 A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣.
(1)求 A、B 兩種型號電動自行車的進貨單價;
(2)若 A 型電動自行車每輛售價為 2800 元,B 型電動自行車每輛售價為 3500 元,設該商店計劃購進 A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y 與 m 之間的函數(shù)關系式;
(3)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)場學習題:
問題背景:
在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上. .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長分別為a,2a、a(a>0),請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積是: .
探索創(chuàng)新:
(3)若△ABC三邊的長分別為、、(m>0,n>0,m≠n),請運用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,直線l:y=x﹣與x軸交于點A,經(jīng)過點A的拋物線y=ax2﹣3x+c的對稱軸是x=.
(1)求拋物線的解析式;
(2)平移直線l經(jīng)過原點O,得到直線m,點P是直線m上任意一點,PB⊥x軸于點B,PC⊥y軸于點C,若點E在線段OB上,點F在線段OC的延長線上,連接PE,PF,且PE=3PF.求證:PE⊥PF;
(3)若(2)中的點P坐標為(6,2),點E是x軸上的點,點F是y軸上的點,當PE⊥PF時,拋物線上是否存在點Q,使四邊形PEQF是矩形?如果存在,請求出點Q的坐標,如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com