【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為( )
A. B. 3 C. 1 D.
【答案】A
【解析】首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.
解:∵AB=3,AD=4,
∴DC=3,
∴AC==5,
根據(jù)折疊可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E,
設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,
22+x2=(4﹣x)2,
解得:x=,
故選:A.
“點睛”此題主要考查了圖形的翻著變換,以及勾股定理的應(yīng)用,關(guān)鍵是掌握折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線和與軸分別相交于點和點,設(shè)兩直線相交于點,點為的中點,點是線段上一個動點(不與點和重合),連結(jié),并過點作交于點.
()判斷的形狀,并說明理由.
()當(dāng)點在線段上運(yùn)動時,四邊形的面積是否為定值?若是,請求出這個定值;若不是,請說明理由.
()當(dāng)點的橫坐標(biāo)為時,在軸上找到一點使得的周長最小,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過P(-2·3).
(1)求此反比例函數(shù)的解析式;
(2)點A(2.-3)、B(3,2)是否在這個函數(shù)的圖象上?
(3)這個函數(shù)的圖象位于哪些象限?函數(shù)值y隨自變量x的減小如何變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)部的一點,∠AOB=30°,OP=8 cm,M,N是OA,OB上的兩個動點,則△MPN周長的最小值_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=a(x+1)2+2的圖象的一部分,根據(jù)圖象回答下列問題:
(1)拋物線與x軸的一個交點A的坐標(biāo)是 ,則拋物線與x軸的另一個交點B的坐標(biāo)是 ;
(2)確定a的值;
(3)設(shè)拋物線的頂點是P,試求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某學(xué)校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時,學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,學(xué)生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于, 兩點,與軸交于點.
()求拋物線的解析式.
()設(shè)拋物線的頂點為,點在拋物線的對稱軸上,且,求點的坐標(biāo).
()點在直線上方的拋物線上,是否存在點使的面積最大,若存在,請求出點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com