[問(wèn)題情境] 勾股定理是一條古老的數(shù)學(xué)定理,它有很多證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。
[定理表述] 請(qǐng)你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號(hào)語(yǔ)言敘述);
[嘗試證明] 以圖(1)中的直角三角形為基礎(chǔ)可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請(qǐng)你利用圖(2)驗(yàn)證勾股定理;
[知識(shí)拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
∵BC=a+b,AD= .
又∵在直角梯形ABCD中有直角腰BC 斜腰AD(填“>”,“<”或“=”),即 。
∴
[定理表述] 如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么a2+b2=c2;
[嘗試證明] ①求證∠AED=90º;②S梯=S△ABE+S△AED+S△DEC;
[知識(shí)拓展] <
解析試題分析:利用SAS可證△ABE≌△ECD,可得對(duì)應(yīng)角相等,結(jié)合90°的角,可證∠AED=90°,利用梯形面積等于三個(gè)直角三角形的面積和,可證a2+b2=c2,在直角梯形ABCD中,BC<AD,由于已證△AED是直角三角形,那么利用勾股定理有AD=,從而可證.
如果直角三角形的兩直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.
∵Rt△ABE≌Rt△ECD,
∴∠AEB=∠EDC;
又∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°;
∴∠AED=90°;
整理得a2+b2=c2
考點(diǎn):全等三角形的判定和性質(zhì),面積分割法,勾股定理
點(diǎn)評(píng):此類問(wèn)題難度較大,在中考中比較常見(jiàn),一般在壓軸題中出現(xiàn),需特別注意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014屆湖北省鄂州市八年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
[問(wèn)題情境] 勾股定理是一條古老的數(shù)學(xué)定理,它有很多證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。
[定理表述] 請(qǐng)你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號(hào)語(yǔ)言敘述);
[嘗試證明] 以圖(1)中的直角三角形為基礎(chǔ)可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請(qǐng)你利用圖(2)驗(yàn)證勾股定理;
[知識(shí)拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
∵BC=a+b,AD= .
又∵在直角梯形ABCD中有直角腰BC 斜腰AD(填“>”,“<”或“=”),即 。
∴
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com