【題目】如圖,以AOB 的頂點(diǎn) O 為圓心,OB 為半徑作O,交 OA 于點(diǎn) E, AB 于點(diǎn) D,連接 DE,DEOB,延長(zhǎng) AO O 于點(diǎn) C,連接 CB

(1)求證:

(2) AD=4,AECE,求 OC 的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)OC =3.

【解析】

(1)連接 CD OB F,推出OB⊥CD,推出

BC=BD;

(2)連接 CD OB F,連接 EF,推出四邊形 EFBD 是平行四邊形,設(shè) OF=x,列出關(guān)于x的方程,解出其值,即可得出OC的值.

如圖 1,連接 CD OB F,

CE 是直徑,

∴∠EDC=90°,

DEOB

∴∠EDC=∠OFC=90°, OBCD

;

如圖 2,連接 CD OB F,連接 EF,

(1)得:DEOB,OBCD,點(diǎn) F CD 的中點(diǎn),

AECE,

EFAD,EFAD=2 ,

O CE 的中點(diǎn),F CD 的中點(diǎn),

OFDE,

EFBDDEBF,

四邊形 EFBD 是平行四邊形,

BFDE

設(shè) OFx,則 BFDE=2xOCOB=3x,

,

BCBDEF=2

DF2=CF2

,

解得:x=±1,

x>0,

x=1,

OC=3x=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形中,點(diǎn)在邊上,以為折痕,將向上翻折,點(diǎn)正好落在上的處,若的周長(zhǎng)為8,的周長(zhǎng)為22,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.

(1)求證:DE是⊙O的切線.

(2)求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊ABE、ADF,延長(zhǎng)CBAE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等邊CGAE( 。

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,且交于點(diǎn)平分,且交于點(diǎn),相交于點(diǎn),連接

1)求證:四邊形是菱形.

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上,若四邊形EGFH是菱形,則AE的長(zhǎng)是_________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,EBC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).

1)求AB的長(zhǎng);

2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).NAB沿長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),并且滿足PM=BN.過(guò)點(diǎn)MMH⊥PB,垂足為H,連結(jié)MNPB于點(diǎn)F(如圖2).

MPA的中點(diǎn),求MH的長(zhǎng);

試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段FH的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段FH的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BCECCFBEAB于點(diǎn)F,PEB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BCFB;④PFPC.其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(04),△AOB為等邊三角形,Px軸負(fù)半軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ

1)求點(diǎn)B的坐標(biāo);

2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說(shuō)明理由;

3)連接OQ,當(dāng)OQAB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案