【題目】如圖,以△AOB 的頂點(diǎn) O 為圓心,OB 為半徑作⊙O,交 OA 于點(diǎn) E,交 AB 于點(diǎn) D,連接 DE,DE∥OB,延長(zhǎng) AO 交⊙O 于點(diǎn) C,連接 CB.
(1)求證:;
(2)若 AD=4,AE=CE,求 OC 的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)OC =3.
【解析】
(1)連接 CD 交 OB 于 F,推出OB⊥CD,推出 ,
即BC=BD;
(2)連接 CD 交 OB 于 F,連接 EF,推出四邊形 EFBD 是平行四邊形,設(shè) OF=x,列出關(guān)于x的方程,解出其值,即可得出OC的值.
如圖 1,連接 CD 交 OB 于 F,
∵CE 是直徑,
∴∠EDC=90°,
∵DE∥OB,
∴∠EDC=∠OFC=90°, 即 OB⊥CD,
∴;
如圖 2,連接 CD 交 OB 于 F,連接 EF,
由(1)得:DE∥OB,OB⊥CD,點(diǎn) F 是 CD 的中點(diǎn),
∵AE=CE,
∴EF∥AD,EF= AD=2 ,
∵O 是 CE 的中點(diǎn),F 是 CD 的中點(diǎn),
∴OF= DE,
∵EF∥BD,DE∥BF,
∴四邊形 EFBD 是平行四邊形,
∴BF=DE,
設(shè) OF=x,則 BF=DE=2x,OC=OB=3x,
∵,
∴BC=BD=EF=2 ,
∵DF2=CF2
∴,
解得:x=±1,
∵x>0,
∴x=1,
∴OC=3x=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平行四邊形中,點(diǎn)在邊上,以為折痕,將向上翻折,點(diǎn)正好落在上的處,若的周長(zhǎng)為8,的周長(zhǎng)為22,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長(zhǎng)CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接
(1)求證:四邊形是菱形.
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上,若四邊形EGFH是菱形,則AE的長(zhǎng)是_________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,E是BC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).
(1)求AB的長(zhǎng);
(2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).N是AB沿長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),并且滿足PM=BN.過(guò)點(diǎn)M作MH⊥PB,垂足為H,連結(jié)MN交PB于點(diǎn)F(如圖2).
①若M是PA的中點(diǎn),求MH的長(zhǎng);
②試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段FH的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段FH的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),△AOB為等邊三角形,P是x軸負(fù)半軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說(shuō)明理由;
(3)連接OQ,當(dāng)OQ∥AB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com