如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠BAD=________°;點D從B向C運動時,∠BDA逐漸變________(填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀也在改變,判斷當∠BDA等于多少度時,△ADE是等腰三角形.

解:(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;
從圖中可以得知,點D從B向C運動時,∠BDA逐漸變小;
故答案為:25°;。

(2)當△ABD≌△DCE時.
DC=AB,
∵AB=2,
∴DC=2,
∴當DC等于2時,△ABD≌△DCE;

(3)∵AB=AC,
∴∠B=∠C=40°,
①當AD=AE時,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此時不符合;
②當DA=DE時,即∠DAE=∠DEA=(180°-40°)=70°,
∵∠BAC=180°-40°-40°=100°,
∴∠BAD=100°-70°=30°;
∴∠BDA=180°-30°-40°=110°;
③當EA=ED時,∠ADE=∠DAE=40°,
∴∠BAD=100°-40°=60°,
∴∠BDA=180°-60°-40°=80°;
∴當∠ADB=110°或80°時,△ADE是等腰三角形.
分析:(1)根據(jù)三角形內(nèi)角和定理,將已知數(shù)值代入即可求出∠BAD,根據(jù)點D的運動方向可判定∠BDA的變化情況.
(2)假設△ABD≌△DCE,利用全等三角形的對應邊相等得出AB=DC=2,即可求得答案.
(3)假設△ADE是等腰三角形,分為三種情況:①當AD=AE時,∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時不符合;②當DA=DE時,求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;③當EA=ED時,求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.
點評:此題主要考查學生對等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識點的理解和掌握,此題涉及到的知識點較多,綜合性較強,但難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案