【題目】如圖,P為正方形ABCD的對角線BD上任一點,過點P作PE⊥BC于點E,PF⊥CD于點F,連接EF.給出以下4個結論:①△FPD是等腰直角三角形;②AP=EF;
③AD=PD;④∠PFE=∠BAP.其中,所有正確的結論是( 。
A. ①② B. ①④ C. ①②④ D. ①③④
【答案】C
【解析】如圖,
∵P為正方形ABCD的對角線BD上任一點,
∴PA=PC,∠C=90°,
∵過點P作PE⊥BC于點E,PF⊥CD,
∴∠PEC=∠DFP=∠PFC=∠C=90°,
∴四邊形PECF是矩形,
∴PC=EF,
∴PA=EF,故②正確,
∵BD是正方形ABCD的對角線,
∴∠ABD=∠BDC=∠DBC=45°,
∵∠PFC=∠C=90°,
∴PF∥BC,
∴∠DPF=45°,
∵∠DFP=90°,
∴△FPD是等腰直角三角形,故①正確,
在△PAB和△PCB中,
,
∴△PAB≌△PCB,
∴∠BAP=∠BCP,
在矩形PECF中,∠PFE=∠FPC=∠BCP,
∴∠PFE=∠BAP.故④正確,
∵點P是正方形對角線BD上任意一點,
∴AD不一定等于PD,
只有∠BAP=22.5°時,AD=PD,故③錯誤,
故選C
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象分別交x軸、y軸子A、B兩點,與反比例函數y的圖象交于C、D兩點,DE⊥x軸于點E,已知點C的坐標是(6,-1),DE=3.
(1)求反比例函數與一次函數的關系式;
(2)根據圖象直接回答:當x為何值時,一次函數的值大于反比例函數的值?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】乘法公式的探究及應用:
(1)如圖,可以求出陰影部分的面積是_____(寫成兩數平方差的形式);
(2)如圖,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是_____,長是_____,面積是________(寫成多項式乘法的形式);
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式:_________(用式子表達);
(4)運用你所得到的公式,計算下列式子:(2m+n﹣p)(2m﹣n+p)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購買一批單價為20元的日用品,如果以單價30元銷售,那么半月內可以售出400件.據銷售經驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高一元,銷售量相應減少20件.如何提高銷售價,才能在半月內獲得最大利潤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上有A、B、C、D四個整數點(即各點均表示整數),且2AB=BC=3CD,若A、D兩點表示的數分別為﹣5和6,且AC的中點為E,BD的中點為M,BC之間距點B的距離為BC的點N,則該數軸的原點為( )
A. 點E B. 點F C. 點M D. 點N
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=120°,射線OC從OA開始,繞點O逆時針旋轉,旋轉的速度為每分鐘20°;射線OD從OB開始,繞點O逆時針旋轉,旋轉的速度為每分鐘5°,OC和OD同時旋轉,設旋轉的時間為t(0≤t≤15).
(1)當t為何值時,射線OC與OD重合;
(2)當t為何值時,∠COD=90°;
(3)試探索:在射線OC與OD旋轉的過程中,是否存在某個時刻,使得射線OC,OB與OD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數 a、b、c 在數軸上對應的點的位置,如圖所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四個結論正確的有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知圖所示的計算程序.
根據計算程序回答下列問題:
(1)填寫表內空格:
輸入x | 3 | 2 | -2 | … | |
輸出答案 | 0 | … |
(2)你發(fā)現的規(guī)律是 .
(3)用簡要過程說明你發(fā)現的規(guī)律的正確性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com