【題目】在平行四邊形中,在對角線上取不同的兩點(diǎn)(點(diǎn)B、E、F、D依次排列),下列條件中,能得出四邊形一定為平行四邊形的是_____________.(A. BE=DF;B. AE=CF C. AE∥CF;D. ∠BAE=∠DCF)
【答案】ACD
【解析】
連接AC與BD相交于O,根據(jù)平行四邊形的對角線互相平分可得OA=OC,OB=OD,再根據(jù)對角線互相平分的四邊形是平行四邊形,只要證明得到OE=OF即可,然后根據(jù)各選項的條件分析判斷即可得解.
解:如圖,連接AC與BD相交于O,
在ABCD中,OA=OC,OB=OD,
要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可;
A、若BE=DF,則OB-BE=OD-DF,即OE=OF,故本選項不符合題意;
B、若AE=CF,則無法判斷OE=OE,故本選項符合題意;
C、AE∥CF能夠利用“角角邊”證明△AOE和△COF全等,從而得到OE=OF,故本選項不符合題意;
D、∠BAE=∠DCF能夠利用“角角邊”證明△ABE和△CDF全等,從而得到DF=BE,然后同A,故本選項不符合題意;
故答案為:ACD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有3個完全相同的小球,分別標(biāo)有數(shù)字0,1和2;乙袋中有3個完全相同的小球,分別標(biāo)有數(shù)字1,2和3,小明從甲袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)M的坐標(biāo)(x,y).
(1)寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M在直線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線a∥b,直線EF分別與直線a,b相交于點(diǎn)E,F,點(diǎn)A,B分別在直線a,b上,且在直線EF的左側(cè),點(diǎn)P是直線EF上一動點(diǎn)(不與點(diǎn)E,F重合),設(shè)∠PAE=∠1,∠APB=∠2,∠PBF=∠3.
(1)如圖1,當(dāng)點(diǎn)P在線段EF上運(yùn)動時,試說明∠1+∠3=∠2;(提示:過點(diǎn)P作PM∥a)
(2)當(dāng)點(diǎn)P在線段EF外運(yùn)動時有兩種情況,①如圖2寫出∠1,∠2,∠3之間的關(guān)系并給出證明.
②如圖3所示,猜想∠1,∠2,∠3之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F,M分別是正方形ABCD三邊的中點(diǎn),CE與DF交于N,連接AM,AN,MN對于下列四個結(jié)論:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN. 其中錯誤的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】田中數(shù)學(xué)興趣小組發(fā)現(xiàn),很多同學(xué)礦泉水沒有喝完便扔掉,造成極大的浪費(fèi).為増強(qiáng)問學(xué)們的節(jié)水意識,小組成員在學(xué)校的春季運(yùn)動會上,隨機(jī)對部分同學(xué)半天時間內(nèi)喝礦泉水的浪費(fèi)情況進(jìn)行了問卷調(diào)查(半天時間每人按一瓶500mL的礦泉水量計算,問卷中將間學(xué)們?nèi)缘舻牡V泉水瓶中剩余水里大致分為四種:A:全部喝完;B.喝剩約滿瓶的,C.喝剩約滿瓶的;D.喝剩約滿瓶的.小組成員將收集的調(diào)査問卷進(jìn)行數(shù)據(jù)整理,并根據(jù)整理結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)此次問卷共調(diào)查多少人;
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)計算平均每人半天浪費(fèi)的礦泉水約為多少亳升;
(4)請估計這次春季運(yùn)動會全校名同學(xué)半天浪費(fèi)的水量相當(dāng)于多少瓶礦泉水(每瓶按計算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平分,點(diǎn)、、分別是射線、、上的動點(diǎn)(、、不與點(diǎn)重合),連接交射線于點(diǎn),設(shè).
(1)如圖1,若,則:
①的度數(shù)為
②當(dāng)時, ,當(dāng)時,
(2)如圖2,若,則是否存在這樣的的值,使得中有兩個想等的角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角尺AOB與COD的直角頂點(diǎn)O重合在一起,若∠AOD=4∠BOC,OE為∠BOC的平分線,則∠DOE的度數(shù)為( 。
A. 36° B. 45° C. 60° D. 72°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF其中正確的結(jié)論是( )
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com