朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱(chēng)軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為
6
,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算AN+
1
2
AM
的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
小王:AM顯然是此正五邊形的對(duì)稱(chēng)軸.
小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…
精英家教網(wǎng)

在這些同學(xué)的提示下,小趙求出了AN+
1
2
AM
=______.

精英家教網(wǎng)

設(shè)正五邊形的邊長(zhǎng)是x,則五邊形的面積是
1
2
×5x?OM=
5
6
2
x,因而ABCM的面積等于
5
6
4
x,
而ABCM的面積=△ACM得面積+△ACB的面積=
1
2
×
1
2
x?AM+
1
2
x?AN=
AM
4
x+
1
2
x?AN,
AM
4
x+
1
2
x?AN=
5
6
4
x,
則:AN+
1
2
AM
=
5
2
6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱(chēng)軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為
6
,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算AN+
1
2
AM
的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
小王:AM顯然是此正五邊形的對(duì)稱(chēng)軸.
小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…精英家教網(wǎng)
在這些同學(xué)的提示下,小趙求出了AN+
1
2
AM
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱(chēng)軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為數(shù)學(xué)公式,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算數(shù)學(xué)公式的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
小王:AM顯然是此正五邊形的對(duì)稱(chēng)軸.
小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求數(shù)學(xué)公式的值.
小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…
在這些同學(xué)的提示下,小趙求出了數(shù)學(xué)公式=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案