【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).

【答案】①②④

【解析】

易證△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正確,再根據(jù)角平分線的性質(zhì)可求得∠DAE=∠DCE,即AD=AE=EC,根據(jù)AD=AE=EC可求得④正確

解:①∵BD為△ABC的角平分線,
∴∠ABD=∠CBD,
在△ABD和△EBC中,

,

∴△ABD≌△EBC(SAS),
∴①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
∵BD為△ABC的角平分線,EF⊥AB,而EC不垂直與BC,
∴EF≠EC,
∴③錯誤;
④過EEG⊥BCG點,

∵EBD上的點,∴EF=EG,
Rt△BEGRt△BEF中,

,

∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
Rt△CEGRt△AFE中,

,

∴Rt△CEG≌Rt△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,
∴④正確.
故答案為:①②④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,邊長為2的正方形OABC的兩頂點AC分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABCO點順時針旋轉(zhuǎn),當A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M , BC邊交x軸于點N(如圖).

(1)求邊OA在旋轉(zhuǎn)過程中所掃過的面積;
(2)旋轉(zhuǎn)過程中,當MNAC平行時,求正方形OABC旋轉(zhuǎn)的度數(shù);
(3)設(shè)△MBN的周長為p , 在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB , 坡面AC的傾斜角為45°為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.

(1)求溫馨提示牌和垃圾箱的單價各是多少元?

(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接四邊形各邊中點所得的四邊形是( 。
A.平行四邊形
B.矩形
C.菱形
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC , ∠B=30°,∠C=60°,E、F、MN分別為AB、CDBC、DA的中點,若BC=7,MN=3,則EF為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請回答下列問題:
(1)敘述三角形中位線定理,并運用平行四邊形的知識證明;
(2)運用三角形中位線的知識解決如下問題:如圖,在四邊形ABCD中,ADBC , EF分別是AB , CD的中點,求證:EF= AD+BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,ACB=90°,CA=CB,DAC上一點,EBC的延長線上,且CE=CD,試猜想BDAE的關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=45°時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案