【題目】模型與應用.

(模型)

(1)如圖①,已知ABCD,求證∠1+MEN2=360°.

(應用)

(2)如圖②,已知ABCD,則∠1+2+3+4+5+6的度數(shù)為

如圖③,已知ABCD,則∠1+2+3+4+5+6+…+n的度數(shù)為

(3)如圖④,已知ABCD,AM1M2的角平分線M1 O與∠CMnMn1的角平分線MnO交于點O,若∠M1OMnm°.

在(2)的基礎上,求∠2+3+4+5+6+……+n-1的度數(shù).(用含m、n的代數(shù)式表示)

【答案】(1)證明見解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°

【解析】(1)過點EEFCD,根據(jù)平行于同一直線的兩條直線互相平行可得EFAB,根據(jù)兩直線平行,同旁內角互補可得∠1+MEF=180°,2+NEF=180°,即可得∠1+2+MEN=360° ;(2)①分別過E點,F點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+2+3+4+5+6=180×5=900°;②由上面的解題方法可得答案;(3)過點OSRAB,根據(jù)平行于同一直線的兩條直線互相平行可得SRCD,根據(jù)兩直線平行,內錯角相等可得∠AM1O=M1OR,C MnO=MnOR,所以∠A M1O+CMnO=M1OR+MnOR,即可得∠A M1O+CMnO=M1OMn=m°,根據(jù)角平分線的定義可得∠AM1M2=2A M1O,CMnMn-1=2CMnO,由此可得∠AM1M2CMnMn-1=2AM1O+2CMnO=2M1OMn=2m°,又因∠A M1E+2+3+4+5+6+……+n-1+CMnMn-1=180°(n-1),由此可得

2+3+4+5+6+…+n-1=(180n-180-2m)°.

【模型】

(1)如圖①,已知ABCD,求證∠1+2+MEN=360°.

證明:過點EEFCD,

ABCD,

EFAB,

∴∠1+MEF=180°,

同理∠2+NEF=180°

∴∠1+2+MEN=360°

【應用】

(2)900° , 180°(n-1)

分別過E點,F點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+2+3+4+5+6=180×5=900°;

由上面的解題方法可得:∠1+2+3+4+5+6+…+n=180°(n-1);

(3)過點OSRAB,

ABCD,

SRCD,

∴∠AM1O=M1OR

同理∠C MnO=MnOR

∴∠A M1O+CMnO=M1OR+MnOR,

∴∠A M1O+CMnO=M1OMn=m°,

M1O平分∠AM1M2,

∴∠AM1M2=2A M1O,

同理∠CMnMn-1=2CMnO,

∴∠AM1M2CMnMn-1=2AM1O+2CMnO=2M1OMn=2m°,

又∵∠A M1E+2+3+4+5+6+……+n-1+CMnMn-1=180°(n-1),

∴∠2+3+4+5+6+…+n-1=(180n-180-2m)°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃生產A、B兩種產品共50件,需購買甲、乙兩種材料.生產一件A產品需甲種材料30千克、乙種材料10千克;生產一件B產品需甲、乙兩種材料各20千克.經測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產B產品不少于28件,問符合條件的生產方案有哪幾種?

3)在(2)的條件下,若生產一件A產品需加工費200元,生產一件B產品需加工費300元,應選擇哪種生產方案,使生產這50件產品的成本最低?(成本=材料費+加工費)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標原點,一邊AB與x軸平行且AB=2,若點A的坐標為(a,b),則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知凸四邊形ABCD中,∠A=∠C=90°.

(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補角,判斷DEBF位置關系并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DEBF位置關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個小組同時從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達乙地.設第二組的步行速度為x千米/小時,根據(jù)題意可列方程是( 。
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|a+b|+|a-b|-2b=0,在數(shù)軸上給出關于a,b的四種位置關系如圖所示,則可能成立的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點中點,如果點在線段上以每秒2cm的速度由點向點運動,同時,點在線段上由點向點運動.設點運動時間為秒,若某一時刻BPECQP全等,求此時的值及點的運動速度.

查看答案和解析>>

同步練習冊答案