【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(m,1).

(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;

(2)若點(diǎn)Py軸上,且△PAB為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】1)(21),y=x-1;(2)(0,1)或(0,3).

【解析】

試題(1)由點(diǎn)在函數(shù)圖象上,得到點(diǎn)的坐標(biāo)滿足函數(shù)解析式,利用待定系數(shù)法即可求得.
(2)分兩種情況,一種是另一種是所以有兩種答案.

試題解析:在的圖象上,

代入

點(diǎn)的坐標(biāo)為

在直線為常數(shù)上,

,

一次函數(shù)的解析式為

B點(diǎn)向y軸作垂線交y軸于P點(diǎn)此時(shí)

點(diǎn)的坐標(biāo)為

點(diǎn)的坐標(biāo)為

當(dāng)時(shí),

中,,,

在等腰直角三角形PAB中,,,

點(diǎn)的坐標(biāo)為

點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,BCD=120°,A的中點(diǎn),延長BA到點(diǎn)P,使BA=AP,連接PE.

(1)求線段BD的長;

(2)求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,點(diǎn)中點(diǎn),點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),連接,將沿折疊得到,連接,當(dāng)為直角三角形時(shí),的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)為何值時(shí),

2)是否存在某一時(shí)刻,使?若存在,求出此時(shí)的長;若不存在,請(qǐng)說理由;

3)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點(diǎn),AE=AB,過點(diǎn)E作射線EF,

(1)若∠DAB=60°,EFABBC于點(diǎn)H,請(qǐng)?jiān)趫D1中補(bǔ)全圖形,并直接寫出四邊形ABHE的形狀;

(2)如圖2,若∠DAB=90°,EFAB相交,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并證明點(diǎn)A,E,B,G在同一個(gè)圓上;

(3)如圖3,若∠DAB=(0°<<90°),EFAB相交,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.請(qǐng)?jiān)趫D3中補(bǔ)全圖形(要求:尺規(guī)作圖,保留作圖痕跡),并求出線段EG、AG、BG之間的數(shù)量關(guān)系(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx22mx+3mx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C0,﹣3

1)求該拋物線的解析式;

2)點(diǎn)D為該拋物線上的一點(diǎn)、且在第二象限內(nèi),連接AC,若∠DAB=∠ACO,求點(diǎn)D的坐標(biāo);

3)若點(diǎn)E為線段OC上一動(dòng)點(diǎn),試求2AE+EC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對(duì)邊中點(diǎn)連線剪開,然后對(duì)接為一個(gè)長方形,則此長方形的周長為___;第二次,再沿長方形的對(duì)邊(長方形的寬)中點(diǎn)連線剪開,對(duì)接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)18米高的樓頂上有一信號(hào)塔DC,李明同學(xué)為了測量信號(hào)塔的高度,在地面的A處測的信號(hào)塔下端D的仰角為30°,然后他正對(duì)塔的方向前進(jìn)了18米到達(dá)地面的B處,又測得信號(hào)塔頂端C的仰角為60°,CD⊥AB與點(diǎn)EE、B、A在一條直線上.請(qǐng)你幫李明同學(xué)計(jì)算出信號(hào)塔CD的高度(結(jié)果保留整數(shù),≈17≈14

查看答案和解析>>

同步練習(xí)冊(cè)答案