【題目】如圖,⊙O的半徑為6,點(diǎn)A,B,C為⊙O上三點(diǎn),BA平分∠OBC,過(guò)點(diǎn)AADBCBC延長(zhǎng)線于點(diǎn)D.

(1)求證:AD是⊙O的切線;

(2)當(dāng)sinOBC=時(shí),求BC的長(zhǎng);

(3)連結(jié)AC,當(dāng)ACOB時(shí),求圖中陰影部分的面積.

【答案】(1)證明見解析;(2);(3)

【解析】

1)根據(jù)切線的判定證明即可;

2)過(guò)O點(diǎn)作OEBC于點(diǎn)E,利用勾股定理和三角函數(shù)解答;

3)連結(jié)OC,利用菱形的性質(zhì)和直角三角形的性質(zhì)解答即可

1BA平分∠OBC,∴∠OBA=CBA

OA=OB∴∠OBA=OAB,∴∠OAB=CBAAOBC

ADBC,ADAO∴直線AD是⊙O切線;

2)過(guò)O點(diǎn)作OEBC于點(diǎn)EBC=2BE.在RtOBE中,∵sinOBC=,,OB=6OE=4,BE=;

3)連結(jié)OC

AOBC,ACOB,OA=OB,∴四邊形OACB是菱形OA=AC=OC=6,∴∠AOC=OAC=60°,∴∠DAC=30°,∴在RtADC,CD=6sin30°=3,AD=,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動(dòng)點(diǎn),當(dāng)△ABM是等腰三角形時(shí),M點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BECD,交于點(diǎn)F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說(shuō)明理由;

(2)求證:過(guò)點(diǎn)AF的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4分)如圖,拋物線的對(duì)稱軸是.且過(guò)點(diǎn)(,0),有下列結(jié)論:abc0;a﹣2b+4c=0;25a﹣10b+4c=0;3b+2c0;a﹣b≥mam﹣b);其中所有正確的結(jié)論是 .(填寫正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,復(fù)興一號(hào)水稻的實(shí)驗(yàn)田是邊長(zhǎng)為m米的正方形去掉一個(gè)邊長(zhǎng)為n米(mn)正方形蓄水池后余下的部分,復(fù)興二號(hào)水稻的試驗(yàn)田是邊長(zhǎng)為(m-n)米的正方形,兩塊試驗(yàn)田的水稻都收獲了a千克.

1)哪種水稻的單位面積產(chǎn)量高?為什么?

2)高的單位面積產(chǎn)量比低的單位面積產(chǎn)量高多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫出ABC向上平移6個(gè)單位得到的A1B1C1

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式的化簡(jiǎn)后,遇到了這樣一個(gè)需要化簡(jiǎn)的式子:.該如何化簡(jiǎn)呢?思考后,他發(fā)現(xiàn)3+2=1+2+(2=(1+2.于是==1+.善于思考的小明繼續(xù)深入探索;當(dāng)a+b=(m+n2時(shí)(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時(shí),a=m2+2n2,b=2mn,于是,=m+n.請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)設(shè)a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時(shí),結(jié)果是a=   ,b=   

(2)利用(1)中的結(jié)論,選擇一組正整數(shù)填空:=   +   

(3)化簡(jiǎn):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y[

1)求出yx的函數(shù)關(guān)系式;

2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷售過(guò)程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案