6.如圖,在△ABC中,BA=BC,∠ABC=90°,AD∥BC,點E在邊AC上,且∠DEB=90°,DH⊥AC于H.
(1)求證:CE-AE=2DH;
(2)若DH=2,AC=8,求四邊形BCHD的面積.

分析 (1)證明:如圖,作BM⊥AC于M,AB與DE交于點O.首先證明△DAO∽△BEO,推出$\frac{OA}{OE}$=$\frac{OD}{OB}$,即$\frac{OA}{OD}$=$\frac{OE}{OB}$,于∠AOE=∠DOB,推出△AOE∽△DOB,∠ODB=∠BAC=45°,DE=BE,由△DEH≌△EBM,推出DH=EM,再根據(jù)CE=AE=(CM+EM)-(AM-EM)=2EM=2DH.即可解決問題.
(2)根據(jù)S四邊形BCHD=S△ADH+S△ABC+S△ABC計算即可.

解答 (1)證明:如圖,作BM⊥AC于M,AB與DE交于點O.

∵AB=BC,∠ABC=90°,
∴∠BAC=∠ACB=45°,
∵AD∥BC,
∴∠DAB=∠ABC=90°,
∵∠AOD=∠EOB,∠DAO=∠OEB=90°,
∴△DAO∽△BEO,
∴$\frac{OA}{OE}$=$\frac{OD}{OB}$,
∴$\frac{OA}{OD}$=$\frac{OE}{OB}$,∵∠AOE=∠DOB,
∴△AOE∽△DOB,
∴∠ODB=∠BAC=45°.
∵∠DEB=90°,
∴∠EDB=∠EBD=45°,
∴DE=BE,
∵∠DEH+∠BEM=90°,∠BEM+∠EBM=90°,
∴∠DEH=∠EBM
∵∠H=∠BME=90°,
∴△DEH≌△EBM,
∴DH=EM,
∵BA=BC,BM⊥AC,
∴AM=CM,
∴CE=AE=(CM+EM)-(AM-EM)=2EM=2DH.

(2)解:由(1)可知,△ADH,△ABC是等腰直角三角形,
∵DH=AH=2,
∴AD=$\sqrt{2}$DH=2$\sqrt{2}$,
∵AC=8,
∴AB=BC=4$\sqrt{2}$,
∴S四邊形BCHD=S△ADH+S△ABC+S△ABC=$\frac{1}{2}$(2×2+2$\sqrt{2}$×4$\sqrt{2}$+4$\sqrt{2}$×4$\sqrt{2}$)=26.

點評 本題考查相似三角形的判定和性質(zhì).等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考?碱}型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

1.分解因式:m2+mn+$\frac{1}{4}$=(m+$\frac{1}{2}$)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
作AD⊥BC于D,設BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型求出x→利用勾股定理求出AD的長,再計算三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.如圖,已知在△ABC中,△ABC的外角∠ABD的平分線與∠ACB的平分線交于點O,MN過點O,且MN∥BC,分別交AB、AC于點M、N.求證:MN=CN-BM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.如圖所示的立體圖形,其主視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

11.如圖,已知在?ABCD中,AE⊥BC于點E,以點B為中心,取旋轉角等于∠ABC,把△BAE順時針旋轉,得到△BA′E′,連接DA′.若∠ADC=60°,AD=5,DC=4   則DA′的大小為( 。
A.1B.$\sqrt{6}$C.$\sqrt{21}$D.2$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.閱讀下面材料:在數(shù)學課上,老師給同學們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.已知:如圖1,正比例函數(shù)和反比例函數(shù)的
圖象分別交于M、N兩點.
要求:在y軸上求作點P,使得∠MPN為直角.
小麗的作法如下:如圖2,以點O為圓心,以OM長為半徑作⊙O,
⊙O與y軸交于P1、P2兩點,則點P1、P2即為所求.
老師說:“小麗的作法正確.”
請回答:小麗這樣作圖的依據(jù)是半圓(或直徑)所對的圓周角是直角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.在一個不透明的盒子中裝有12個紅球,若干個籃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球為紅球的概率是$\frac{4}{7}$,則籃球的個數(shù)為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.下列命題是假命題的是( 。
A.三角形的內(nèi)角和是180°
B.有一個角是60°的等腰三角形是等邊三角形
C.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
D.平行四邊形具有穩(wěn)定性

查看答案和解析>>

同步練習冊答案