【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應(yīng)國家號召,15位村民集資8萬元,承包了一些土地種植有機蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:
現(xiàn)有條件下,這15位村民應(yīng)承包多少公頃土地,怎樣安排能使得每人都有事可做,并且資金正好夠用.
【答案】應(yīng)承包3.5公頃田地,其中2.5公頃種蔬菜、1公頃種水果.
【解析】
設(shè)承包的田地中,x公頃種蔬菜,y公頃種水果, 根據(jù)題目所給每公頃所需人數(shù)與每公頃投入資金數(shù)可把總?cè)藬?shù)與總資金用x表示出來,由此可得到關(guān)于x、y的兩個方程;
聯(lián)立方程組即可解答本題,
解:設(shè)承包的田地中,x公頃種蔬菜,y公頃種水果,由題可得
解得
x+y=3.5公頃
故應(yīng)承包3.5公頃田地,其中2.5公頃種蔬菜、1公頃種水果.
答:應(yīng)承包3.5公頃田地,其中2.5公頃種蔬菜、1公頃種水果.
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(a,0),B(0,b),實數(shù)a、b滿足.
(1)求點A、點B的坐標;
(2)若點P的坐標是P(-2,x),且,且△PAB的面積為7,求x的值;
(3)如圖,過點B作BC∥x軸,Q是x軸上點A左側(cè)的一動點連接QB,BM平分∠QBA,BN平分∠ABC,當點Q運動時直接寫出____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等腰三角形,,.
尺規(guī)作圖:作的角平分線BD,交AC于點保留作圖痕跡,不寫作法;
判斷是否為等腰三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,點P為ΔABC內(nèi)一點.
(1)連接PB,PC,將ABCP沿射線CA方向平移,得到ΔDAE,點B,C,P的對應(yīng)點分別為點D、A、E,連接CE.
①依題意,請在圖2中補全圖形;
②如果BP⊥CE,BP=3,AB=6,求CE的長
(2)如圖3,以點A為旋轉(zhuǎn)中心,將ΔABP順時針旋轉(zhuǎn)60°得到△AMN,連接PA、PB、PC,當AC=3,AB=6時,根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過點,.
(1)求直線的解析式;
(2)若直線與直線相交于點,求點的坐標;
(3)根據(jù)圖象,直接寫出關(guān)于的不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,點D是BC邊的中點,DE⊥BC,∠ABC的角平分線BF交DE于△ABC內(nèi)一點P,連接PC.
(1)若∠ACP=24°,求∠ABP的度數(shù);
(2)若∠ACP=m°,∠ABP=n°,請直接寫出m,n滿足的關(guān)系式: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)填寫下表,觀察被開方數(shù)a的小數(shù)點與算術(shù)平方根的小數(shù)點的移動規(guī)律:
a | 0.0016 | 0.16 | 16 | 1600 |
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知:=2.683 ,則=_________, =________
②已知: =6.164,若=61.64, 則x=____________,
(3)直接寫出與a的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,連接AB.
(1)如圖,已知AC、BC分別是∠BAP和∠ABM角的平分線,
①點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大。
②如圖,將△ABC沿直線AB折疊,若點C落在直線PQ上,記作點C′,則∠ABO= °;如圖,將△ABC沿直線AB折疊,若點C落在直線MN上,記作點C′′,則∠ABO= °.
(2)如圖,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com