【題目】已知:平行線之間的距離分別為.我們把四個(gè)頂點(diǎn)分別在這四條平行線上的四邊形稱為線上四邊形

1)如圖1,正方形線上四邊形,于點(diǎn)的延長線交直線于點(diǎn).求正方形的邊長.

2)如圖2,菱形線上四邊形是等邊三角形,點(diǎn)在直線上,連接的延長線分別交直線于點(diǎn).求證:

【答案】1;(2)見詳解

【解析】

1)利用AAS證明ABE≌△BCF,即可求得AEBE的長,然后利用勾股定理即可求解;

2)先ACEADF,然后利用全等的性質(zhì)得到

解:(1)如圖1


BEl,lk,
∴∠AEB=BFC=90°,
又四邊形ABCD是正方形,
∴∠1+2=90°,AB=BC,∠2+3=90°,
∴∠1=3,
∴在ABEBCF中,
,
∴△ABE≌△BCFAAS),
AE=BF=2,
BE=d1+d2=2+3=5,
AB=,
∴正方形的邊長是;

2)如圖,連接AC

∵四邊形ABCD是菱形

CD=AD

∴△ACD是等邊三角形

AD=AC,∠CAD=60°

是等邊三角形

AE=AF,∠EAF=60°

∵∠FAD=CAD-CAF =60°-CAF

EAC=EAF-CAF =60°-CAF

∴∠FAD=EAC

∴在ACEADF中,
,
ACEADFSAS),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意兩個(gè)數(shù)、的大小比較,有下面的方法:當(dāng)時(shí),一定有;當(dāng)時(shí),一定有;當(dāng)時(shí),一定有.反過來也成立.因此,我們把這種比較兩個(gè)數(shù)大小的方法叫做求差法.請(qǐng)根據(jù)以上材料完成下面的題目:

1)已知:,,且,試判斷的符號(hào);

2)已知:、為三角形的三邊,比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以點(diǎn)為旋轉(zhuǎn)中心把按順時(shí)針旋轉(zhuǎn)一定角度,得到點(diǎn)恰好落在上,連接度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮媽媽下崗后開了一家糕點(diǎn)店,現(xiàn)有10.2千克面粉,10.2千克雞蛋,計(jì)劃加工一般糕點(diǎn)和精制糕點(diǎn)兩種產(chǎn)品共50盒.

⑴有哪幾種符合題意的加工方案?請(qǐng)你幫忙設(shè)計(jì)出來;

⑵若銷售一般糕點(diǎn)和精制糕點(diǎn)的利潤分別為1.5元/盒和2元/盒,試問哪種方案使小亮媽媽可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD被直線BD,DF所截,ABCD,BFBD,垂足為B,EG平分BED,CDE50F25

⑴求證:EGBF;⑵求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓半徑,半徑OCAB于點(diǎn)O點(diǎn)D是弧BC的中點(diǎn),連接CD、ADOD,給出以下四個(gè)結(jié)論①∠DOB=∠ADC;CE=OE;③△ODE∽△ADO④2CD2=CE·AB其中正確結(jié)論的序號(hào)是( 。

A. ①③ B. ②④ C. ①④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)軸,軸分別交于點(diǎn)和點(diǎn),點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),若三角形為等腰三角形,則它的底邊長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AFCD,CB平分∠ACD,BD平分∠EBF,且BCBD,下列結(jié)論:① BC平分∠ABE;② ACBE;③ CBE+D90°;④ DEB2ABC.其中正確結(jié)論的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2-6ax+6(a≠0)x軸交于點(diǎn)A(8,0),與y軸交于點(diǎn)B,在X軸上有一動(dòng)點(diǎn)E(m,0)(0m8),過點(diǎn)Ex軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過點(diǎn)PPMAB于點(diǎn)M

)分別求出直線AB和拋物線的函數(shù)表達(dá)式;

)設(shè)PMN的面積為S1AEN的面積為S2,若S1S2=3625,求m的值;

)如圖2,在()條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°α90°),連接EAEB

①在x軸上找一點(diǎn)Q,使OQE∽△OEA,并求出Q點(diǎn)的坐標(biāo);

②求BE+AE'的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案