【題目】有一個運算裝置,當輸入值為x時,其輸出值為y,且y是x的二次函數(shù),已知輸入值為﹣2,0,1時,相應的輸出值分別為5,﹣3,﹣4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標系中畫出這個二次函數(shù)的圖象,并根據圖象寫出當輸出值y為正數(shù)時輸入值x的取值范圍.

【答案】
(1)解:設所求二次函數(shù)的解析式為y=ax2+bx+c,

把(﹣2,5)(0,﹣3)(1,﹣4)代入得

解得

故所求的解析式為:y=x2﹣2x﹣3;


(2)解:函數(shù)圖象如圖所示,

由圖象可得,當輸出值y為正數(shù)時,

輸入值x的取值范圍是x<﹣1或x>3.


【解析】(1)把三個點的坐標代入二次函數(shù)根據待定系數(shù)法求出函數(shù)的解析式即可;(2)函數(shù)值為正數(shù),即是二次函數(shù)與與x軸的交點的上方的函數(shù)圖象所對應的x的值.
【考點精析】通過靈活運用二次函數(shù)的圖象,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)x﹣4=2﹣5x; (2)﹣(x﹣3)=3(2﹣5x);

(3)4x﹣2(﹣x)=1; (4)﹣1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線y=3x分別與雙曲線y=、y=x>0)交于P、Q兩點,且OP=2OQ

(1)求k的值.

(2)如圖2,若點A是雙曲線y= 上的動點,ABx軸,ACy軸,分別交雙曲線y=x>0)于點B、C,連接BC.請你探索在點A運動過程中,△ABC的面積是否變化?若不變,請求出△ABC的面積;若改變,請說明理由;

(3)如圖3,若點D是直線y=3x上的一點,請你進一步探索在點A運動過程中,以點A、B、CD為頂點的四邊形能否為平行四邊形?若能,求出此時點A的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩地盛產柑桔,地有柑桔200噸,地有柑桔300噸.現(xiàn)將這些柑桔運到CD兩個冷藏倉庫,已知倉庫可儲存240噸,倉庫可儲存260噸;從地運往CD兩處的費用分別為每噸20元和25元,從地運往C、D兩處的費用分別為每噸15元和18元.設從地運往倉庫的柑桔重量為x噸,AB兩地運往兩倉庫的柑桔運輸費用分別為yA元和yB元.

(1)請?zhí)顚懴卤砗蠓謩e求出yA,yB之間的函數(shù)關系式,并寫出定義域;

C

D

總計

A

x

200

B

300

總計

240

260

500

(2)試討論A,B兩地中,哪個運費較少;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標是(0,3),點B在x軸上,將△AOB繞點A逆時針旋轉90°得到△AEF,點O、B的對應點分別是點E、F.

(1)若點B的坐標是(﹣4,0),請在圖中畫出△AEF,并寫出點E、F的坐標.
(2)當點F落在x軸的上方時,試寫出一個符合條件的點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(1,6)和點B在反比例函數(shù)圖象上,AD⊥x軸于點D,BC⊥x軸于點C,DC=5.
(1)求反比例函數(shù)的表達式和點B的坐標;
(2)連接AB,在線段DC上是否存在一點E,使△ABE的面積等于5?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù):

取每一行的第n個數(shù),依次記為x、y、z.如上圖中,當n=2時,x=﹣4,y=﹣3,z=2.

(1)當n=7時,請直接寫出x、y、z的值,并求這三個數(shù)中最大的數(shù)與最小的數(shù)的差;

(2)已知n為偶數(shù),且x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;

(3)若m=x+y+z,則x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為   (用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一塊菱形菜地ABCD中,對角線AC與BD相交于點O,若在菱形菜地內均勻地撒上種子,則種子落在陰影部分的概率是(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC中,∠A=90°,D是AC上一點,且∠ADB=2∠C,P是BC上任一點,PE⊥BD于點E,PF⊥AC于點F,下列結論:

①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2

其中結論正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案