【題目】如圖,先有一張矩形紙片點(diǎn)分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點(diǎn)落在矩形的邊上,記為點(diǎn),點(diǎn)落在處,連接,交于點(diǎn),連接.下列結(jié)論:

②四邊形是菱形;

重合時(shí),;

的面積的取值范圍是

其中正確的是_____(把正確結(jié)論的序號(hào)都填上).

【答案】②③

【解析】

先判斷出四邊形是平行四邊形,再根據(jù)翻折的性質(zhì)可得,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出②正確;假設(shè),進(jìn)而得,這個(gè)不一定成立,判斷①錯(cuò)誤;點(diǎn)與點(diǎn)重合時(shí),設(shè),表示出,利用勾股定理列出方程求解得的值,進(jìn)而用勾股定理求得,判斷出③正確;當(dāng)過(guò)點(diǎn)時(shí),求得四邊形的最小面積,進(jìn)而得的最小值,當(dāng)重合時(shí),的值最大,求得最大值便可.

如圖1

四邊形是平行四邊形,

四邊形是菱形,故②正確;

,則

,這個(gè)不一定成立,

故①錯(cuò)誤;

點(diǎn)與點(diǎn)重合時(shí),如圖2,

設(shè)

解得

,

,

,

,

故③正確;

當(dāng)過(guò)點(diǎn)時(shí),如圖3,

此時(shí),最短,四邊形的面積最小,則最小為

當(dāng)點(diǎn)與點(diǎn)重合時(shí),最長(zhǎng),四邊形的面積最大,則最大為,

故④錯(cuò)誤.

故答案為:②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)為射線上一動(dòng)點(diǎn),將沿折疊,得到恰好落在射線上,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y1kx2+ax+a的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),函數(shù)y2kx2+bx+b,的圖象與x軸交于點(diǎn)CD(點(diǎn)C在點(diǎn)D的左側(cè)),其中k≠0,ab

1)求證:函數(shù)y1y2的圖象交點(diǎn)落在一條定直線上;

2)若ABCD,求a,bk應(yīng)滿足的關(guān)系式;

3)是否存在函數(shù)y1y2,使得B,C為線段AD的三等分點(diǎn)?若存在,求的值,若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[提出問(wèn)題]正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的邊及內(nèi)角有什么關(guān)系?

[探索發(fā)現(xiàn)]

為了解決這個(gè)問(wèn)題,我們不妨從最簡(jiǎn)單的正多邊形-------正三角形入手

如圖①,是正三角形,邊長(zhǎng)是內(nèi)任意一點(diǎn),各邊距離分別為,確定的值與的邊及內(nèi)角的關(guān)系.

如圖②,五邊形是正五邊形,邊長(zhǎng)是是正五邊形內(nèi)任意一點(diǎn),到五邊形各邊距離分別為, 參照的探索過(guò)程,確定的值與正五邊形的邊及內(nèi)角的關(guān)系.

類比上述探索過(guò)程:

正六邊形(邊長(zhǎng)為)內(nèi)任意一點(diǎn) 到各邊距離之和

正八邊形(邊長(zhǎng)為)內(nèi)任意一點(diǎn)到各邊距離之和

[問(wèn)題解決]邊形(邊長(zhǎng)為)內(nèi)任意-一點(diǎn)P到各邊距離之和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)、兩種商品,購(gòu)買(mǎi)1個(gè)商品比購(gòu)買(mǎi)1個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買(mǎi)商品和花費(fèi)100元購(gòu)買(mǎi)商品的數(shù)量相等.

1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購(gòu)買(mǎi)、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購(gòu)買(mǎi)商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過(guò)點(diǎn),交軸于點(diǎn)點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為

1)求拋物線的解析式:

2)將沿直線對(duì)折,點(diǎn)的對(duì)稱點(diǎn)為,試求的坐標(biāo);

3)拋物線的對(duì)稱軸上是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,已知直線ykx+m與拋物線yax2+bx+c分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B60)和點(diǎn)C0,6),且拋物線的對(duì)稱軸為直線x4;

1)試確定拋物線的解析式;

2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是直角三角形?若存在請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo),不存在請(qǐng)說(shuō)明理由;

3)如圖2,點(diǎn)Q是線段BC上一點(diǎn),且CQ,點(diǎn)My軸上一個(gè)動(dòng)點(diǎn),求△AQM的最小周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圓內(nèi)接四邊形ABCD,ADBCAB是⊙O的直徑.

1)求證:ABCD;

2)如圖2,連接OD,作∠CBE2ABD,BEDC的延長(zhǎng)線于點(diǎn)E,若AB6,AD2,求CE的長(zhǎng);

3)如圖3,延長(zhǎng)OB使得BHOBDF是⊙O的直徑,連接FH,若BDFH,求證:FH是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時(shí),試判斷點(diǎn)(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1-4),求該函數(shù)的表達(dá)式.

3)當(dāng)-1≤x+1時(shí),yx的增大而減小,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案