【題目】二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn),與軸交于點(diǎn)

1_________,_________;

2)如圖1,軸上一動點(diǎn),點(diǎn)軸上,連接,求的最小值;

3)如圖2,點(diǎn)在拋物線上,若,求點(diǎn)的坐標(biāo)

【答案】11,-3;(24;(3,,,

【解析】

(1) 、分別代入得到二元一次方程組,解方程求得ac即可.

2)如圖1中,作.先說明,然后在,,由垂線段最短可知,當(dāng)DP、H共線時,最小,最后求得最小值即可;

3)如圖2中,取點(diǎn),作,易知.由,過點(diǎn)EBC的平行線交拋物線于M1、M2,則則,,再求出直線M1M2的解析式,然后聯(lián)立解方程組即;同理可求出M3M4的坐標(biāo).

解:(1)把,代入

得到,,解得

故答案為1,-3

2)如圖1中,作

,

,

中,

,

根據(jù)垂線段最短可知,當(dāng)、共線時最小,最小值為,

中,,,

的最小值為

3)如圖2中,取點(diǎn),作,易知

過點(diǎn)的平行線交拋物線于,,則,,

直線的解析式為,

直線的解析式為,

解得

,

根據(jù)對稱性可知,直線關(guān)于直線的對稱的直線與拋物線的交點(diǎn)、也滿足條件,

易知直線的解析式為

解得

,,

綜上所述,滿足條件的點(diǎn)的坐標(biāo)為,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸于點(diǎn)(0,0)和點(diǎn),拋物線軸于點(diǎn)(0,0)和點(diǎn),拋物線軸于點(diǎn)(00)和點(diǎn)…按此規(guī)律,拋物線軸于點(diǎn)(0,0)和點(diǎn)(其中n為正整數(shù)),我們把拋物線稱為系數(shù)為的“關(guān)于原點(diǎn)位似”的拋物線族.

1)試求出的值;

2)請用含n的代數(shù)式表示線段的長;

3)探究下列問題:

①拋物線的頂點(diǎn)縱坐標(biāo)a、n有何數(shù)量關(guān)系?請說明理由;

②若系數(shù)為a的“關(guān)于原點(diǎn)位似”的拋物線族的各頂點(diǎn)坐標(biāo)記為(T,S),請直接寫出ST所滿足的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)Aa,0)為x軸上一動點(diǎn),點(diǎn)M1,﹣1)、點(diǎn)N3,﹣4),連接AM、MN,點(diǎn)N關(guān)于直線AM的對稱點(diǎn)為N

1)若a2,在圖1中畫出線段MN關(guān)于直線AM的對稱圖形MN(保留作圖痕跡),直接寫出點(diǎn)N的坐標(biāo)  ;

2)若a0,連接ANAN,當(dāng)點(diǎn)A運(yùn)動到∠NAN90°時,點(diǎn)N恰好在雙曲線y上(如圖2),求k的值;

3)點(diǎn)Ax軸上運(yùn)動,若∠NMN90°,此時a的值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用1200元購進(jìn)一批甲玩具,用800元購進(jìn)一批乙玩具,所購甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進(jìn)貨單價比乙玩具的進(jìn)貨單價多1元.

1)求:甲、乙玩具的進(jìn)貨單價各是多少元?

2)玩具售完后,超市決定再次購進(jìn)甲、乙玩具(甲、乙玩具的進(jìn)貨單價不變),購進(jìn)乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購甲玩具多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A1,4),B4,2),C3,5)(每個方格的邊長均為1個單位長度).

1)請畫出△A1B1C1,使△A1B1C1△ABC關(guān)于x軸對稱;

2)將△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線交坐標(biāo)軸于A、C兩點(diǎn),拋物線AC兩點(diǎn).

1)求拋物線的解析式;

2)若點(diǎn)P為拋物線位于第三象限上一動點(diǎn),連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點(diǎn)P的坐標(biāo),若不存在,請說明理由;

3)點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N為拋物線對稱軸上一點(diǎn),若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD按如圖所示的方式折疊,BE,EG,FG為折痕,若頂點(diǎn)A,C,D都落在點(diǎn)O處,且點(diǎn)B,O,G在同一條直線上,同時點(diǎn)E,O,F在另一條直線上,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCO為矩形,點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C在反比例函數(shù)y= (x<0)的圖象上,若點(diǎn)By軸上,則點(diǎn)A的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時AC的長.

查看答案和解析>>

同步練習(xí)冊答案