(2013•成都)如圖,某山坡的坡面AB=200米,坡角∠BAC=30°,則該山坡的高BC的長為
100
100
米.
分析:在Rt△ABC中,由∠BAC=30°,AB=200米,即可得出BC的長度.
解答:解:由題意得,∠BCA=90°,∠BAC=30°,AB=200米,
故可得BC=
1
2
AB=100米.
故答案為:100.
點評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是掌握含30°角的直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,在△ABC中,∠B=∠C,AB=5,則AC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°
(1)畫出旋轉(zhuǎn)之后的△AB′C′;
(2)求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,點B在線段AC上,點D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;
(i)當(dāng)點P與A,B兩點不重合時,求
DPPQ
的值;
(ii)當(dāng)點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,A,B,C為⊙O上相鄰的三個n等分點,
AB
=
BC
,點E在
BC
上,EF為⊙O的直徑,將⊙O沿EF折疊,使點A與A′重合,點B與B′重合,連接EB′,EC,EA′.設(shè)EB′=b,EC=c,EA′=p.現(xiàn)探究b,c,p三者的數(shù)量關(guān)系:發(fā)現(xiàn)當(dāng)n=3時,p=b+c.請繼續(xù)探究b,c,p三者的數(shù)量關(guān)系:當(dāng)n=4時,p=
c+
2
b
c+
2
b
;當(dāng)n=12時,p=
c+
6
+
2
2
b
c+
6
+
2
2
b

(參考數(shù)據(jù):sin15°=cos75°=
6
-
2
4
cos15°=sin75°=
6
+
2
4

查看答案和解析>>

同步練習(xí)冊答案