如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,觀察下列圖形并解答有關(guān)問題:
(1)在第n個圖中,共有______塊白色瓷磚,共有______塊黑色瓷磚(均用含n的代數(shù)式表示);
(2)若鋪設(shè)這樣的矩形地面共用了506塊瓷磚,通過計(jì)算求此時(shí)n的值;
(3)是否存在n,使得黑瓷磚與白瓷磚塊數(shù)相等的情形?說明理由.

【答案】分析:(1)觀察圖形發(fā)現(xiàn):第n個圖形的白瓷磚的每行是(n+1)個,每列是n個,即可表示白瓷磚,用減法可以表示出黑瓷磚;
(2)根據(jù)總瓷磚數(shù)列方程求解;
(3)根據(jù)黑、白瓷磚數(shù)相等列方程求解.
解答:解:(1)白瓷磚:n(n+1).
黑瓷磚:(n+3)(n+2)-n(n+1)=4n+6;

(2)n(n+1)+4n+6=506.
解得n1=20,n2=-25(不合題意,舍去).
所以n的值為20;

(3)由題意得n(n+1)=4n+6,

因?yàn)椴皇钦麛?shù),
所以不存在黑瓷磚與白瓷磚塊數(shù)相等的情形.
點(diǎn)評:此題要結(jié)合圖形發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律能夠列方程求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答有關(guān)問題:
(1)在第n個圖中共有
4n+6
塊黑瓷磚,
n(n+1)
塊白瓷磚;
(2)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?你能通過計(jì)算說明嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)地面,請觀察右邊圖形并解答有關(guān)問題:
(1)在第n個圖形中,需用白瓷磚
n(n+1)
塊,黑瓷磚
(4n+6)
塊.(均用含n的代數(shù)式表示);
(2)按上述的鋪設(shè)方案,設(shè)鋪一塊這樣的矩形地面共用506塊瓷磚,且黑瓷磚每塊4元,白瓷磚每塊3元,問一共需花多少元錢購買瓷磚?
(3)是否存在黑、白瓷磚塊數(shù)相等的情形請通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形并解答有關(guān)問題.
(1)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,寫出y與n(n表示第n個圖形)的函數(shù)關(guān)系式;
(2)按上述鋪設(shè)方案,鋪一塊這樣的矩形地面共用了506塊瓷磚,求此時(shí)n的值;
(3)若黑瓷磚每塊4元,白瓷磚每塊3元,在問題(2)中共需花多少元錢購買瓷磚?
(4)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?通過計(jì)算說明為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答有關(guān)問題:
(1)在第5個圖中共有
30
30
塊白瓷磚;
(2)在第n個圖中共有
n(n+1)
n(n+1)
塊白瓷磚,
(4n+6)
(4n+6)
塊黑瓷磚;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)矩形地面.請觀察下列圖形并解答有關(guān)問題:
(1)在第n個圖中,每一橫行共有
n+3
n+3
 塊瓷磚,每一堅(jiān)列共有
n+2
n+2
塊瓷磚(均用含n的代數(shù)式表示);
(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,用(1)中的n表示y;
(3)當(dāng)n=20時(shí),求此時(shí)y的值;
(4)若黑瓷磚每塊4元,白瓷磚每塊3元,在問題(3)中,共需花多少元錢購買瓷磚?

查看答案和解析>>

同步練習(xí)冊答案