【題目】如圖,ABC中,∠B=∠C30°,點OBC邊上一點,以點O為圓心、OB為半徑的圓經(jīng)過點A,與BC交于點D.

試說明AC與⊙O相切;

,求圖中陰影部分的面積.

【答案】1)見解析;(2

【解析】

1)連接OA,先得出∠OAB=30°,再解得∠OAC=90°,從而可判斷出AC與⊙O的位置關(guān)系;

2)連接AD,設(shè)OA的長度為x,根據(jù)“陰影部分的面積=OAC的面積-扇形OAD的面積”列出方程即可求解.

連接OA.

OA=OB

OAB=B

B=30°

OAB=30°

ABC中:∠B=C=30°

BAC=180°-∠B-∠C=120°

OAC=BAC-∠OAB=120°30°=90°

OAAC

AC是⊙O的切線,即AC與⊙O相切.

連接AD.

C=30°,∠OAC=90°

OC=2OA

設(shè)OA的長度為x,則OC=2x

OAC中,∠OAC=90°,

根據(jù)勾股定理可得:

解得:,(不合題意,舍去)

答:圖中陰影部分的面積為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m△CPQ的面積為S

S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點 A 在函數(shù)y1=-x0)的圖象上,點 B 在直線 y2=kx+1+kk 為常數(shù),且 k≥0)上.若 A,B 兩點關(guān)于原點對稱,則稱點 A,B 為函數(shù) y1y2 圖象上的一對友好點.請問這兩個函數(shù)圖象上的友好點對數(shù)的情況為(

A.1對或2B.只有1

C.只有2D.2對或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝改革開放40周年,深圳舉辦了燈光秀,某數(shù)學興趣小組為測量“平安金融中心”AB的高度,他們在地面C處測得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、DB三點在同一水平直線上,且CD=400米,DB=200米.

1)求大廈DE的高度;

2)求平安金融中心AB的高度.

(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85tan32°≈0.62,1.41,1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關(guān)于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位的方格紙中,它的頂點在小正方形頂點位置,其中點、、也是小正方形的頂點,那么與相似的是(

A.以點、、為頂點的三角形;

B.以點、、為頂點的三角形

C.以點、為頂點的三角形

D.以點、、為頂點的三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元.已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎(chǔ)上每臺降價50元,則平均每天可多售出4臺.設(shè)每臺冰箱的實際售價比原銷售價降低了x元.

1)填表(不需化簡):


每天的銷售量/

每臺銷售利潤/

降價前

8

400

降價后



2)商場為使這種冰箱平均每天的銷售利潤達到5000元,則每臺冰箱的實際售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; AEBC; ③△ADE的周長是9 ④∠ADE=BDC.其中正確的序號是( 。

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB12m,拱高CD4m.

1)求拱橋的半徑;

2)有一艘寬為5m的貨船,船艙頂部為長方形,并高出水面3.4m,則此貨船是否能順利通過此圓弧形拱橋,并說明理由;

查看答案和解析>>

同步練習冊答案