【題目】如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC,點(diǎn)F是DE上一動(dòng)點(diǎn),以點(diǎn)F為圓心,FD為半徑作⊙F,當(dāng)FD=_____時(shí),⊙F與Rt△ABC的邊相切.
【答案】或
【解析】
如圖1,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),切點(diǎn)為H,連接FH,則HF⊥AC,解直角三角形得到AC=4,AB=5,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根據(jù)相似三角形的性質(zhì)得到DF=;如圖2,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),延長DE交AB于H,推出點(diǎn)H為切點(diǎn),DH為⊙F的直徑,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
如圖1,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),切點(diǎn)為H,
連接FH,則HF⊥AC,
∴DF=HF,
∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,
∴AC=4,AB=5,
將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC,
∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,
∵FH⊥AC,CD⊥AC,
∴FH∥CD,
∴△EFH∽△EDC,
∴=,
∴=,
解得:DF=;
如圖2,當(dāng)⊙F與Rt△ABC的邊AC相切時(shí),延長DE交AB于H,
∵∠A=∠D,∠AEH=∠DEC
∴∠AHE=90°,
∴點(diǎn)H為切點(diǎn),DH為⊙F的直徑,
∴△DEC∽△DBH,
∴=,
∴=,
∴DH=,
∴DF=,
綜上所述,當(dāng)FD=或時(shí),⊙F與Rt△ABC的邊相切,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時(shí),把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤停止后,指針?biāo)傅膬蓚(gè)數(shù)字之和為奇數(shù)時(shí),甲獲勝;為偶數(shù)時(shí),乙獲勝.
(1)用列表法(或畫樹狀圖)求甲獲勝的概率;
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x枚黑棋和y枚白棋,這些棋除顏色外無其他差別.
(1)從盒中隨機(jī)取出一枚棋子,如果它是黑棋的概率是,寫出表示x和y關(guān)系的表達(dá)式.
(2)往盒中再放進(jìn)10枚黑棋,取得黑棋的概率變?yōu)?/span>,求x和y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的袋子中裝有3個(gè)紅球和2個(gè)綠球,它們除顏色外無其它差別.
(1)隨機(jī)摸出一個(gè)球后,放回并搖勻,再隨機(jī)摸出一個(gè)球,用列表或畫樹狀圖的方法求出所有等可能的結(jié)果;
(2)同時(shí)摸出兩個(gè)球,直接寫出“摸出的兩個(gè)球都是紅球”的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x+8與反比例函數(shù)(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于D點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)在第一象限內(nèi),根據(jù)圖象直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門.將足球從離地面0.5m的A處正對(duì)球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,己知足球飛行0.8s時(shí),離地面的高度為3.5m.
(1)a= ,c= ;
(2)當(dāng)足球飛行的時(shí)間為多少時(shí),足球離地面最高?最大高度是多少?
(3)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勝利中學(xué)從全校學(xué)生中隨機(jī)選取一部分學(xué)生,對(duì)他們每周上網(wǎng)的時(shí)間t進(jìn)行調(diào)查,調(diào)查情況分為:小時(shí);小時(shí)小時(shí);小時(shí)小時(shí);小時(shí)四種,并將統(tǒng)計(jì)結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息解答下列問題:
求參加調(diào)查的學(xué)生的人數(shù);
求扇形圖中組扇形的圓心角度數(shù),并通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
在所調(diào)查的學(xué)生中,隨機(jī)選取一名學(xué)生,求他每周上網(wǎng)時(shí)間大于小時(shí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為
(1)求該二次函數(shù)的解析式;
(2)在x軸上方作x軸的平行線,交二次函數(shù)圖象于A、B兩點(diǎn),過A、B兩點(diǎn)分別作x軸的垂線,垂足分別為點(diǎn)D、點(diǎn)C.當(dāng)矩形ABCD為正方形時(shí),求m的值;
(3)在(2)的條件下,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿射線AB以每秒1個(gè)單位長度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)A出發(fā)沿線段AD勻速運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)立即原速返回,當(dāng)動(dòng)點(diǎn)Q返回到點(diǎn)A時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒().過點(diǎn)P向x軸作垂線,交拋物線于點(diǎn)E,交直線AC于點(diǎn)F,問:以A、E、F、Q四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形能否是平行四邊形.若能,請求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,直線AB與反比例函數(shù)y=(m>0)在第一象限的圖象交于點(diǎn)C、點(diǎn)D,其中點(diǎn)C的坐標(biāo)為(1,8),點(diǎn)D的坐標(biāo)為(4,n).
(1)分別求m、n的值;
(2)連接OD,求△ADO的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com