【題目】如圖,中,點(diǎn)、分別是邊的中點(diǎn),分別交對角線于點(diǎn)、,則______.

【答案】

【解析】

由四邊形ABCD是平行四邊形可得ADBCAD=BC,DEH∽△BCH,進(jìn)而得,連接AC,交BD于點(diǎn)M,如圖,根據(jù)三角形的中位線定理可得EFAC,可推得,△EGH∽△CMH,于是得DG=MG,,設(shè)HG=a,依次用a的代數(shù)式表示出MH、DG、BH,進(jìn)而可得答案.

解:∵四邊形ABCD是平行四邊形,∴ADBC,AD=BC,

∴△DEH∽△BCH,∵EAD中點(diǎn),AD=BC,∴,

連接AC,交BD于點(diǎn)M,如圖,∵點(diǎn)、分別是邊、的中點(diǎn),∴EFAC

,△EGH∽△CMH,∴DG=MG,

設(shè)HG=a,則MH=2a,MG=3a,∴DG=3a,∴DM=6a

∵四邊形ABCD是平行四邊形,∴BM=DM=6a,BH=8a

.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是(

A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點(diǎn)坐標(biāo)是(-2,-7)

C.當(dāng)x<0時(shí),yx的增大而增大D.該函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),且分布在坐標(biāo)原點(diǎn)兩側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線與直線交于,兩點(diǎn),點(diǎn)是拋物線的頂點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為,過點(diǎn)軸的垂線,交直線于點(diǎn),當(dāng)線段的長度最大時(shí),求的值及的最大值.

3)在拋物線上是否存在異于、的點(diǎn),使邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,正八邊形ABCDEFGH內(nèi)接于⊙O,對角線CE、DF相交于點(diǎn)M,則△MEF的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC2,∠BAC120°,DBC邊上的點(diǎn),將DAD點(diǎn)逆時(shí)針旋轉(zhuǎn)120°得到DE

1)如圖1,若ADDC,則BE的長為   ,BE2+CD2AD2的數(shù)量關(guān)系為   

2)如圖2,點(diǎn)DBC邊山任意一點(diǎn),線段BE、CD、AD是否依然滿足(1)中的關(guān)系,試證明;

3M為線段BC上的點(diǎn),BM1,經(jīng)過BE、D三點(diǎn)的圓最小時(shí),記D點(diǎn)為D1,當(dāng)D點(diǎn)從D1處運(yùn)動(dòng)到M處時(shí),E點(diǎn)經(jīng)過的路徑長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)貨單價(jià)為30元的商品以每個(gè)40元的價(jià)格售出時(shí),平均每月能售出600個(gè),調(diào)查表明:這種商品的售價(jià)每上漲1元,其銷售量就減少10個(gè).

1)為了使平均每月有10000元的銷售利潤且盡快售出,這種商品的售價(jià)應(yīng)定為每個(gè)多少元?

2)當(dāng)該商品的售價(jià)為每個(gè)多少元時(shí),商場銷售該商品的平均月利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的一條弦,點(diǎn)C⊙O上一動(dòng)點(diǎn),∠ACB=30°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF⊙O交于G、H兩點(diǎn),⊙O的半徑為8,GE+FH的最大值為(

A.8B.12C.16D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為   度;

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

材料1 若一元二次方程ax2+bx+c0a0)的兩個(gè)根為x1,x2x1+x2=﹣,x1x2

材料2 已知實(shí)數(shù)m,n滿足m2m10,n2n10,且mn,求的值.

解:由題知mn是方程x2x10的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1m+n1,mn=﹣1,所以=﹣3

根據(jù)上述材料解決以下問題:

1)材料理解:一元二次方程5x2+10x10的兩個(gè)根為x1x2,則x1+x2   ,x1x2   

2)類比探究:已知實(shí)數(shù)m,n滿足7m27m10,7n27n10,且mn,求m2n+mn2的值:

3)思維拓展:已知實(shí)數(shù)s、t分別滿足19s2+99s+10t2+99t+190,且st1.求的值.

查看答案和解析>>

同步練習(xí)冊答案