在直角梯形ABCD中,AD∥BC,∠B=90°,∠B=90°,∠C=60°,AD=CD,點E在射線BC上,將△ABE沿AE翻折,點B落到點F處,射線EF與射線CD交于點M.
(1)當點M在CD邊上時(如圖a),求證:FM一DM=
(2)當點E在BC邊的延長線上時(如圖b),線段FM、DM、AB的數(shù)量關系______
【答案】分析:(1)利用過點A作AG⊥CD,交CD的延長線于點G,連接AG,AM,進而利用HL定理得出Rt△AMG≌Rt△AMF,即可得出答案;
(2)首先連接AM,AC,作AG⊥MC于點G,進而利用HL定理得出Rt△AMG≌Rt△AMF,即可得出答案;
(3)首先利用勾股定理得出BE與CE的長,進而利用利用相似三角形的判定得出△AGN∽△ACE,即可得出GN的長.
解答:解:(1)過點A作AG⊥CD,交CD的延長線于點G,連接AG,AM
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠ACD=∠DAC
∴∠ACB=∠ACD,
∴AG=AB
∵AB=AF,
∴AG=AF
又∵AM=AM,
在Rt△AMG和Rt△AMF中,

∴Rt△AMG≌Rt△AMF(HL),
∴FM=GM,
∴FM一DM=GD,
∵∠ADG=∠BCD=60°
∴DG=
∴FM-DM=AB;

(2)連接AM,AC,作AG⊥MC于點G,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠ACD=∠DAC,
∴∠ACB=∠ACD,
∵AB⊥BC,AG⊥MC,
∴AG=AB
∵AB=AF,
∴AG=AF
又∵AM=AM,
在Rt△AMG和Rt△AMF中,

∴Rt△AMG≌Rt△AMF(HL),
∴FM=GM,
∴FM-DM=GD,
∵∠ADG=∠BCD=60°
∴DG=,
∴DM-FM=AB,
故答案為:DM-FM=AB;

(3)連接AC,過點M作MH⊥BC于H,過點D作DK⊥BC于K,
∵AD=6,F(xiàn)M=1,
∴KC=3,DK=3,AB=3,BC=9,
又∵(2)知:DM-FM=AB,
∴DM=×3+1=4,
∴MC=10,HC=5,MH=5,BH=4,
設BE=x,則FE=x,ME=x-1,HE=x-4,
∵MH2+HE2=ME2
∴(52+(x-4)2=(x-1)2,
  解得:x=15,
∴BE=15,CE=6,
∵∠BCG=60°,
∴∠ECG=120°,
由(1)知Rt△AMG≌Rt△AMF,∠BCA=∠ACG=30°,
∴∠MAG=∠MAF,設∠BAE=m°,∠FAM=n°,則∠BAF=m°,∠GAF=2n°,
∴2m-2n=120°,m-n=60°,
∴∠EAM=60°,
又∵∠CAG=60°,
∴∠GAN=∠CAE,
∵∠AGN=∠ACE=150°,
∴△AGN∽△ACE,
∵AG=AC,
,
∴GN=CE=3.
點評:此題主要考查了翻折變換的性質(zhì)以及相似三角形的判定與性質(zhì)和全等三角形的判定等知識,根據(jù)已知得出全等三角形與相似三角形是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖①,在直角梯形ABCD中,∠B=90°,DC∥AB,動點P從B點出發(fā),由B→C→D→A沿邊運動,設點P運動的路程為x,△ABP的面積為y,若關于y與x的函數(shù)圖象如圖②,求梯形ABCD的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,若AD=8,BC=10,則cosC的值為( 。
A、
4
5
B、
3
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,且AB=BC=4AD,E是AB上的一點,DE⊥EC.求證:CE平分∠BCD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,∠A=∠B=90°,∠C=45°,AB=4,AD=5,把梯形沿過點D的直線折疊,使點A剛好落在BC邊上,則此時折痕的長為
5
5
2
或2
5
5
5
2
或2
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,若AD=5,點A的坐標為(-2,7),則點D的坐標為( 。

查看答案和解析>>

同步練習冊答案