【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離0.7米,頂端到地面距離2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端到地面距離2米,求小巷的寬度.

【答案】小巷的寬度CD2.2.

【解析】

先根據(jù)勾股定理求出AB的長(zhǎng),同理可得出AD的長(zhǎng),進(jìn)而可得出結(jié)論.

解:在RtACB中,∵∠ACB90°,BC2.4米,AC0.7米,

AB20.722.426.25,

RtAB′D中,∵∠ADB′90°,B′D2米,

AD2226.25,

AD22.25

AD0

AD1.5米.

CDACAD0.71.52.2米.

答:小巷的寬度CD2.2米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由等圓組成的一組圖中,第個(gè)圖由個(gè)圓組成,第個(gè)圖由個(gè)圓組成,第個(gè)圖由個(gè)圓組成,……,按照這樣的規(guī)律排列下去,則第個(gè)圖形由______個(gè)圓組成,第個(gè)圖形由_____個(gè)圓組成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程

1 3x-2(x-1)= 2- 3(5-2x)

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以直線為對(duì)稱(chēng)軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線軸交于點(diǎn).

(1)求拋物線的函數(shù)表達(dá)式;

(2)設(shè)直線與拋物線的對(duì)稱(chēng)軸的交點(diǎn)為,是拋物線上位于對(duì)稱(chēng)軸右側(cè)的一點(diǎn),若,且的面積相等,求點(diǎn)的坐標(biāo);

(3)若在軸上有且只有一點(diǎn),使,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明學(xué)校門(mén)前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來(lái)到山腳下進(jìn)行測(cè)量.測(cè)量方案如下:如圖,首先,小明站在地面上的點(diǎn)A處,測(cè)得電線桿頂端點(diǎn)P的仰角是45;然后小明向前走6米到達(dá)點(diǎn)B處,測(cè)得電線桿頂端點(diǎn)P和電線桿底端點(diǎn)Q的仰角分別是6030,設(shè)小明的眼睛到地面的距離為1.6.請(qǐng)根據(jù)以上測(cè)量的數(shù)據(jù),計(jì)算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖有一張簡(jiǎn)易的活動(dòng)小餐桌,現(xiàn)測(cè)得OA=OB=30cm,OC=OD=50cm,桌面離地面的高度為40cm,則兩條桌腿的張角COD的度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏家2017年和2018年的家庭支出如下:

12017年教育方面支出所占的百分比是多少?教育方面支出的金額是多少?

22018年教育方面支出的金額是多少?教育方面支出對(duì)應(yīng)的扇形圓心角度數(shù)是多少?

32018年教育方面支出的金額比2017年增加了還是減少了?變化了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,點(diǎn),,在同一條直線上,且,∠A=FDE,在①,②∠CBA=∠E,③∠C=∠F中,請(qǐng)選擇其中一個(gè)條件,證明△ABC≌△DEF

1)你選擇的條件是________(只需填寫(xiě)序號(hào));

2)證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案