【題目】線段AB和線段CD交于點(diǎn)O,OE平分∠AOC,點(diǎn)F為線段AB上一點(diǎn)(不與點(diǎn)A和點(diǎn)O重合)過(guò)點(diǎn)F作 FG//OE,交線段CD于點(diǎn)G,若∠AOD=110°,則∠AFG的度數(shù)為_____°.
【答案】35°或145°.
【解析】
分兩種情況討論:點(diǎn)F在AO上,點(diǎn)F在OB上,依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠AFG度數(shù).
解:如圖,當(dāng)點(diǎn)F在AO上時(shí),
∵∠AOD=110°,
∴∠AOC=70°,
又∵OE平分∠AOC,
∴∠COE=35°,
∵FG∥OE,
∴∠OGF=35°,
∴∠AFG=∠AOD+∠OGF=110°+35°=145°;
如圖,當(dāng)點(diǎn)F在OB上時(shí),
∵∠AOD=110°,
∴∠AOC=70°,
又∵OE平分∠AOC,
∴∠AOE=35°,
∵FG∥OE,
∴∠AFG=∠AOE=35°,
故答案為:35°或145°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)實(shí)驗(yàn)室:
點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-2,則點(diǎn)A和B之間的距離是 ,若AB=2,那么x為 ;
(3)當(dāng)x是 時(shí),代數(shù)式;
(4)若點(diǎn)A表示的數(shù)-1,點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,PQ=1?(請(qǐng)寫(xiě)出必要的求解過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】股民小楊上星期五買(mǎi)進(jìn)某公司股票 1000 股,每股 27 元.下表為本周內(nèi)每日該股票的漲跌情況(單位:元):
(1)星期三收盤(pán)時(shí),該股票漲或跌了多少元?
(2)本周內(nèi)該股票的最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)已知小楊買(mǎi)進(jìn)股票時(shí)付了 1.5‰的手續(xù)費(fèi),賣(mài)出時(shí)還需要付成交額的 1.5‰的手續(xù)費(fèi)和 1‰的交易稅.如果小楊在星期五收盤(pán)前將全部股票賣(mài)出,則他的收益情況如何?
(收益=賣(mài)股票收入﹣買(mǎi)股票支出﹣賣(mài)股票手續(xù)費(fèi)和交易稅﹣買(mǎi)股票手續(xù)費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).
(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對(duì)稱軸與x軸交于點(diǎn)E.
①若線段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線上一點(diǎn)M,作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的邊BC上有一動(dòng)點(diǎn)E,連接AE、DE,以AE、DE為邊作AEDF.在點(diǎn)E從點(diǎn)B移動(dòng)到點(diǎn)C的過(guò)程中,AEDF的面積( )
A.先變大后變小B.先變小后變大C.一直變大D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為12cm,弦AB=12cm.
(1)求圓心O到弦AB的距離.
(2)若弦AB恰好是△OCD的中位線,以CD中點(diǎn)E為圓點(diǎn),R為半徑作⊙E,當(dāng)⊙O和⊙E相切時(shí),求R的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過(guò)A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線;
(2)設(shè)D是弧AC的中點(diǎn),連結(jié)BD交AC 于G,過(guò)D作DE⊥AB于E,交AC于F.求證:FD=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、B在數(shù)軸上分別表示數(shù)a,b.若A、B兩點(diǎn)間的距離記為d,則d和a,b之間的數(shù)量關(guān)系是d=|a-b|.
(1)數(shù)軸上有理數(shù)x與有理數(shù)-2所對(duì)應(yīng)兩點(diǎn)之間的距離可以表示為______;
(2)|x+6|可以表示數(shù)軸上有理數(shù)x與有理數(shù)_______所對(duì)應(yīng)的兩點(diǎn)之間的距離;
若|x+6|= |x -2|,則x=______;
(3)若a=1,b=-2,將數(shù)軸折疊,使得A點(diǎn)與﹣7表示的點(diǎn)重合,則B點(diǎn)與數(shù)______表示的點(diǎn)P重合;
(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為11(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(guò)(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是:M:_____, N:_______;
(5)在題(3)的條件下,點(diǎn)A為定點(diǎn),點(diǎn)B、P為動(dòng)點(diǎn),若移動(dòng)點(diǎn)B、P中一點(diǎn)后,能否使相鄰兩點(diǎn)間距離相等?若能,請(qǐng)寫(xiě)出移動(dòng)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料并解決有關(guān)問(wèn)題:
我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:
①當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當(dāng)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3;
③當(dāng)x≥2時(shí),原式=x+1+x﹣2=2x﹣1.綜上討論,原式=.
通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:
(1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com