如圖所示,點A與點B的距離是3個單位長度的木條,當(dāng)木條左端A點落在-10與-9之間,則B點落在哪兩個整數(shù)之間?(A、B方向不變)
解::-7與-6之間,如圖:
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、兩個完全相同的三角形紙片,在平面直角坐標(biāo)系中的擺放位置如圖所示,點P與點P′是一對對應(yīng)點,若點P的坐標(biāo)為(a,b),則點P′的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2精英家教網(wǎng),OB=4,現(xiàn)將Rt△AOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點.
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動點(P不與B、C重合),過點P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時,求PE的解析式;
(3)作點D關(guān)于此拋物線對稱軸的對稱點F,連接CF交對稱軸于點M,拋物線上一動點R,x軸上一動點Q,則在拋物線上是否存在點R,x軸上是否存在點Q,使得以C、M、Q、R為頂點的四邊形是平行四邊形?如果存在,求出Q點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江模擬)在8×8的正方形網(wǎng)格中建立如圖所示坐標(biāo)系,已知A(2,4),B(4,2).
(1)在第一象限內(nèi)標(biāo)出一個格點C,使得點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(2)填空:C點的坐標(biāo)是
(1,1)
(1,1)
,△ABC的面積是
4
4

(3)請?zhí)骄浚涸趚軸上是否存在這樣的點P,使以點A、B、P為頂點的三角形的面積等于△ABC的面積?若存在,請直接寫出點P的坐標(biāo)(可以在網(wǎng)格外);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形OABC在平面直角坐標(biāo)系中位置如圖所示,點A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),動點E自A點出發(fā)以每秒2個單位的速度沿A→B→C→O的路線移動,同時,點D以每秒1個單位的速度從O出發(fā)沿著射線OA方向運動,點M為OD的中點,當(dāng)點D與A重合時停止一切運動.
(1)當(dāng)點D與A重合時,點E的坐標(biāo)是
(0,2)
(0,2)

(2)設(shè)△MDE的面積為S,運動時間為t,請寫出S與t的函數(shù)關(guān)系式,指出自變量的取值范圍,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1是兩個正方形紙片ABCD和CEFG疊放在一起,分別以BC邊所在直線和BC邊的中垂線為坐標(biāo)軸建立如圖所示的坐標(biāo)系,其中B(-2,0),E(2,
2
),C(2,0),固定正方形ABCD,直線L經(jīng)過AC兩點;將正方形CEFG繞點C順時針旋轉(zhuǎn)135°得到正方形CE1F1G1,
(1)在圖2中求點E1的坐標(biāo),并直接寫出點E1與直線L的位置關(guān)系.
(2)利用(1)的結(jié)論,將圖2中的正方形CE1F1G1在射線CA上沿著CA方向以每秒1個單位的速度平移,平移后的正方形CE1F1G1設(shè)為正方形PQRH(圖3),當(dāng)點R移動到點A停止,設(shè)正方形PQRH移動的時間為t秒,正方形PQRH與正方形ABCD重疊部分的面積為S,請直接寫出S與t之間的函數(shù)解析式,并寫出函數(shù)自變量t的取值范圍.
(3)在(2)的條件下,如果S=1時,過BP的直線為m,M點為直線m上的動點,N為直線L上的動點,那么是否存在平行四邊形MNBC,如果存在,請求出M點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案