【題目】已知,、在數(shù)軸上對應(yīng)的數(shù)分別用、表示,且.
(1)數(shù)軸上點表示的數(shù)是________,點表示的數(shù)是___________;
(2)若一動點從點出發(fā),以個單位長度秒速度由向運動;動點從原點出發(fā),以個單位長度秒速度向運動,點、同時出發(fā),點運動到點時兩點同時停止.設(shè)點運動時間為秒.
①若從到運動,則點表示的數(shù)為_______,點表示的數(shù)為___________(用含的式子表示)
②當(dāng)為何值時,點與點之間的距離為個單位長度.
【答案】(1)-5,15;(2)①-5+3t,t;②當(dāng)=1.5或3.5秒.
【解析】
(1)根據(jù)偶數(shù)次冪和絕對值的非負性,即可求解;
(2)①根據(jù)點P與點Q的移動速度和起始位置,即可得到答案;②分兩種情況討論:若點P在點的左邊時,若點P在點的右邊時,分別列出關(guān)于t的方程,即可求解.
(1)∵,
又∵,
∴,
解得:a=-5,b=15;
∴數(shù)軸上點表示的數(shù)是-5,點表示的數(shù)是15.
故答案是:-5,15;
(2)①∵點P以個單位長度/秒速度由向運動,
∴點表示的數(shù)為:-5+3t,
∵動點從原點出發(fā),以個單位長度秒速度向運動,
∴點表示的數(shù)為:t.
故答案是:-5+3t,t;
②若點P在點的左邊時,t-(-5+3t)=2,解得:t=1.5;
若點P在點的右邊時,(-5+3t)-t=2,解得:t=3.5.
答:當(dāng)=1.5或3.5秒時,點與點之間的距離為個單位長度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上有一點P1(2,1),將點P1先向右平移1個單位,再向上平移2個單位得到像點P2,點P2恰好在直線l上.
(1)點P2的坐標(biāo)為 ;
(2)求直線l的解析表達式;
(3)求直線y=﹣x+b經(jīng)過點P1,交x軸于點C,則b的值是多少?已知直線l與x軸交于點D,求△P1CD的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在線段AB上,線段AC=8cm,BC=4cm,點M、N分別是AC、BC的中點, 求:
(1) 線段MN的長度.
(2) 根據(jù)(1)的計算過程和結(jié)果,設(shè)AC+BC=,其它條件不變,你能猜測出MN的長度嗎?請證明你的猜測.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在數(shù)軸上有A,B兩點,所表示的數(shù)分別為-10,4,點A以每秒5個單位長度的速度向右運動,同時點B以每秒3個單位長度的速度也向左運動,如果設(shè)運動時間為t秒,解答下列問題:
(1)運動前線段AB的長為 ; 運動1秒后線段AB的長為 ;
(2)運動t秒后,點A,點B運動的距離分別為 ;用t表示A,B分別為 .
(3)求t為何值時,點A與點B恰好重合;
(4)在上述運動的過程中,是否存在某一時刻t,使得線段AB的長為6,若存在,求t的值; 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某賓館準(zhǔn)備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
(2)若該賓館準(zhǔn)備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)至按照一定規(guī)律排成下表:
…… |
記表示第行第個數(shù),如表示第行第個數(shù)是.
(1)直接寫出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)將表格中的個陰影格子看成一個整體并平移,所覆蓋的個數(shù)之和能否等于.若能,求出這個數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其補角的度數(shù);
(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)為“理想有理數(shù)對”,記為,如:數(shù)對、都是“理想有理數(shù)對”.
(1)數(shù)對、中是“理想有理數(shù)對”的是______;
(2)若是“理想有理數(shù)對”,求a的值;
(3)若是“理想有理數(shù)對”,則______“理想有理數(shù)對”(填“是”、“不是”或“不確定”);
(4)請再寫出一對符合條件的“理想有理數(shù)對”.(不能與題目中已有的數(shù)對重復(fù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com