如圖,?ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=,則AB的長是   
【答案】分析:根據(jù)平行四邊形性質(zhì)推出AB=CD,AB∥CD,得出平行四邊形ABDE,推出DE=DC=AB,根據(jù)直角三角形性質(zhì)求出CE長,即可求出AB的長.
解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四邊形ABDE是平行四邊形,
∴AB=DE=CD,
即D為CE中點(diǎn),
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠DCF=∠ABC=60°,
∴∠CEF=30°,
∵EF=,
∴CE==2,
∴AB=1,
故答案為1.
點(diǎn)評:本題考查了平行四邊形的性質(zhì)和判定,平行線性質(zhì),勾股定理,直角三角形斜邊上中線性質(zhì),含30度角的直角三角形性質(zhì)等知識點(diǎn)的應(yīng)用,此題綜合性比較強(qiáng),是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時,四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時,四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長CE交BA的延長線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,?ABCD中,對角線AC和BD交于點(diǎn)O,過O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案